Teaching Network Protocol Concepts in an Open-Source Simulation Environment

J. Mark Pullen
Department of Computer Science
George Mason University
4400 University Drive, Fairfax VA 22030 USA
mpullen@cs.gmu.edu
Overview

• Philosophy behind Network Workbench
• Teaching network protocols using simulation
• Java Network Workbench 2
 • Features
 • Structure
 • Available exercises
• JNW2 and constructivism
• Grade outcomes/conclusion
Philosophy behind Network Workbench

• We’ve been using simulation as a teaching tool for network protocols since 1993

• Students learn more by solving problems
 • Specifically how network protocols work
 • We provide scaffolding for all the “busy work” of programming
 • They program the core algorithms
 • Simulation provides reproducible results

• Java Network Workbench 2 (JNW2) replaces Network Workbench (which was C++ based)
 • Open source software for teaching
JNW2 and Constructivism

JNW2 is rooted in constructivist philosophy as laid out by Savery and Duffy (1995):

- Anchor all learning activities to a larger task or problem
- Support the learner in developing ownership for the overall problem or task
- Design an authentic task
- Design the task and the learning environment to reflect the complexity of the environment they should be able to function in at the end of learning
- Give the learner ownership of the process used to develop the solution
- Design the learning environment to support and challenge the learner’s thinking
- Encourage testing ideas against alternative views and alternative contexts
- Provide opportunity for and support reflection on both the content learned and the learning process
What is Provided in JNW2

• Overall environment packaged for NetBeans
 • Also usable in Eclipse
 • Java offers lower complexity and student familiarity
• At the heart, a Discrete Event Simulation (DES) engine
 • All activity has known time (or distribution)
 • Each event can trigger another event
• Java classes to support all functions
 • Good quality programming
 • Stack patterned after the Internet Protocol Suite
 • In the middle of key stack layers, place for student to add code
 • With algorithm to be implemented, in comments
 • Must interoperate with open-source code provided
• Example data “email” and network structure
Java Network Workbench 2 Features

• Like the Internet, node addresses have a local and global part
 • And there is a Data Link layer underneath

• DES steps through the simulation visibly, in “ticks”
 • `nextEvent()` pulls next scheduled action from list

• Stochastic option: an event can have predictable time or last for time drawn at random from a distribution
 • But the random number generator seed always follows the same pattern so the outcome is predictable

• Network can be viewed graphically
Java Network Workbench 2 Structure
Mark Pullen Teaching Network Protocol Concepts in an Open Source Simulation Environmnet
Java Network Workbench 2 Exercises

• Data Link Layer
 • *bit stuffing/unstuffing*
 • *error detection*
 • *Carrier Sense Multiple Access with Collision Detection*

• Network Layer
 • *topology matrices*
 • *network layer routing*

• Transport Layer
 • *reliable transport layer*
 • *slow-start sending end window*
More Exercises Planned

- token passing local area networks?
- network layer routing information distribution
- multicast networking
- network security
- application layer message handling
- mixture of traffic types
Grade Outcomes and Conclusion

• ABET requirements stimulated collecting outcomes; students score a letter grade higher on JNW2-related exam questions

<table>
<thead>
<tr>
<th>Semester</th>
<th>Number of Students</th>
<th>JNW2-related</th>
<th>Not JNW2-related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2009</td>
<td>26</td>
<td>64.6</td>
<td>61.3</td>
</tr>
<tr>
<td>Spring 2014</td>
<td>30</td>
<td>67.7</td>
<td>56.2</td>
</tr>
<tr>
<td>Fall 2014</td>
<td>22</td>
<td>78.0</td>
<td>72.0</td>
</tr>
<tr>
<td>Spring 2016</td>
<td>35</td>
<td>78.1</td>
<td>63.5</td>
</tr>
<tr>
<td>Overall</td>
<td>113</td>
<td>72.2</td>
<td>62.7</td>
</tr>
</tbody>
</table>

• Students enjoy the projects and learn more
• JNW2 is available http://netlab.gmu.edu/JNW2
 • Solutions available by faculty request on department letterhead