
Teaching Network Protocol Concepts in an Open-Source
Simulation Environment

J. Mark Pullen
Department of Computer Science

George Mason University
4400 University Drive, Fairfax VA 22030

USA
mpullen@cs.gmu.edu

ABSTRACT

This paper describes a new-generation open source tool for
computer networking education called the Java Network
Workbench 2 (JNW2), along with the successful teaching
practices associated with that tool. JNW2 applies the
constructivist educational philosophy, where students learn
by doing, in this case by creating a software solution to an
abstracted problem. The packaging of JNW2 is therefore
categorically different from production network simulators
such as OPNET and ns3. The paper describes the
philosophy and software design of JNW2 and relates these
to the educational theory of constructivism. Experience and
objective outcomes relating to teaching with JNW2 are
described. Students are enthusiastic about using it and
analysis shows a clear improvement in exam performance
for concepts reinforced via JNW2 exercises.

CCS CONCEPTS
• Networks→Network protocol design

KEYWORDS
Network protocols; teaching computer networking;
simulation.

ACM Reference format:

J. Mark Pullen, 2018, Teaching Network Protocol Concepts
in an Open-Source Simulation Environment. In Proceedings
of 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE’18). ACM, New York,
NY, USA, 5 pages, https://doi.org/10.1145/3197091.3197137

1 INTRODUCTION

This paper describes a new-generation tool for computer
networking education called the Java Network Workbench
2. It includes successful practices associated with that tool,
in light of the educational philosophy called constructivism.

JNW2 is the third in a family of network simulators
intended primarily for educational use. The earlier members
of the family are Network Workbench (NW) [6] and Java
Network Workbench. This paper builds on concepts
originally introduced by the author in [7] and updates those
results based on the latest JNW2 software version and
teaching experience. Section 2 explains the philosophy
behind this approach to teaching; section 3 describes the
structure of JNW2; section 4 explains how JNW2
implements a Constructionist approach; section 5 provides
quantitative evidence supporting the approach described,
and section 6 concludes the paper.

2 PHILOSOPHY BEHIND NW
NW is a software simulation environment for academic
investigation of network protocol concepts. The motivation
behind NW and its programming exercises [8] began with
the observation that students understand network protocols
much better after they create a mental model of the protocol
workings in the process of programming them. The original
NW consists of a collection of software modules written in
the C++ programming language, implementing a simplified
but complete protocol stack modeled after the primary
protocols of the Internet. A discrete event simulation (DES)
system provides a means for the protocols to be executed
in an observable, repeatable way by students. The students
are able to create their own versions of each of the
protocols in the stack and test their implementations either
as individual protocols or in an integrated stack. NW has
been described in detail by the author in [6, 7].

2.1 JNW2 System Overview

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org.
ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5707-4/18/07...$15.00
https://doi.org/10.1145/3197091.3197137

The specific context provided by NW is intended to support
students puzzling out solutions and do so in such a way
that little of their time is devoted to issues that are not
central to how the protocol works. For example, the
interfaces between stack layers are provided by the
Workbench, as are the mechanics of the discrete event
simulation. This approach was based on practical
observation, made over years of teaching networking, that
classroom instruction was found to be less than satisfactory
for imparting a real understanding of the protocols’
workings, while programming exercises that apply the
protocols teach how to use them, not how they work. NW
was developed to address the need for hands-on work that
teaches how network protocols function. Student
responses and examination results indicate that NW works
very well for this purpose.

Over the time since NW was introduced, emphasis in
Computer Science education has moved away from the C+
+ language to the Java language. Java features lower
complexity, an elegant overall design well-adapted to
modern programming practices, and a virtual machine
implementation that makes it extremely portable. Initial
efforts at developing a Java Network Workbench
unfortunately did not reflect the elegance of design and
implementation that is possible in Java, so we started again
and in JNW2 produced an implementation that we believe
is an exemplar of Java software for Computer Science
students.

2.2 Computer Network Simulation as
a Learning Environment

It is well known that students learn best those concepts that
are reinforced by activities requiring them to use the
concepts. However, computer networking is a complex,
interdisciplinary subject. It is important to avoid
assignments that require long periods of time learning
details such as socket-level programming that may be
useful programming skills but do not teach critical aspects
of network protocols. Without an understanding of the
internal operation of the network, students will see it as a
“black box,” learning too little to make effective use of
networks in the distributed systems that are common today.
A further complication occurs because an operational
network environment features constantly changing traffic,
where programming errors may not be triggered
consistently.

Computer Science students need to understand the
most important collection of protocols in use today: the core
protocols of the Internet. There is great value in the
interoperability made possible by these protocols.
However, achieving this interoperability requires adherence
to specific rules for information transfer. It is important that
students learn how interoperability is facilitated by working

with details of a protocol stack that conforms to the protocol
definitions. In the Network Workbench, they do this by
implementing key aspects of the protocols. This requires
both solving a technical problem (programming a protocol
that will communicate with another instance of itself) and
adhering to a techno-social compact (programming a
protocol such that it will interoperate with a different
implementation).

The author’s experience indicates that a network
simulation environment represents the best compromise
between the problems associated with student network
programming and the need for students to reinforce
classroom learning by doing a real project. Simulation is
used widely to abstract away non-essential physical details
(which also are likely to be unrepeatable in testing) while
exercising the critical aspects of a protocol. Simulations run
as user programs in the computer, making them easy to
load and run in a personal computer. Students can
program abstracted versions of the protocols that actually
run in the simulation environment. The simulation
environment is structured as high-quality Java code,
designed to facilitate observation of data flowing through
each level of the protocol stack. Students also are exposed
to the concept of network simulation, an important tool in
protocol development and network design.

Table 1. JNW2 Java Packages and Classes
(* indicates multiple similar files)

Source
Package

Purpose Constituent Classes

JNW2 Top-level
functionality

ConnectivityMatrix,
Constants, Copyright,
EmailApplication,
GenericTest,
RunSimulation,
SimLogger,
SimualtionEngine,
Topology

JNW2.config Network
configurations
for exercises

ConfigDescription,
Dijkstra, LANCollisions,
ReliableDLC,
ReliableTransport,
Run123, SimpleWAN,
SlowStartWindow,
WAN2

JNW2.data Test input Email*.txt, Stream*.txt

JNW2.event
s

Discrete
Event

DiscreteEventSimulator,
DLCSendWakeupEvent,

Simulation
subsystem

LANSendRecycleEvent,
PhysicalReceiveEvent,
ReceiveEvent,
SendEvent,
TLSendWakeupEvent,
TransportReceiveEvent,
TransportSendEvent

JNW2.gui Network
drawing
subsystem

CollisionUtil,
ConsoleOutputer,
FileManager,
GraphicMouseAdapter,
GraphicPanel, Gui*,
Jnw2GuiFrame,
MenuLink,
OtherInputPanel,
RoutingMatrixCellEditor,
RoutingMatrixDialog,
RoutingMatrixTableMod
el, State, StringOutputer,
SubnetDetailsDialog,
TopologyBuilder

JNW2.stac
k

Protocol
stack
modules

ApplicationLayer,
DlcLayer, Layer,
NetworkLayer,
PhysicalLayer, Stack,
TransportLayer

JNW2.utilit
y

Miscellaneo
us
processes

DataUtility,
DijkstraRouting,
MessageGenerator,
RandomNumber,
RandomNumber2,
Statistics

3 STRUCTURE OF JNW2

3.1 Components
Very powerful network simulators are available today.
However, those which work at the protocol level, such as
OPNET [3] and ns3 [4] are highly complex tools that take a
long time to master. JNW2 was designed to maintain the
simplest structure consistent with valid representation of
the TCP/IP protocol stack, while also providing scaffolding
for aspects of simulation and module interface functionality
which does not contribute to student understanding of
protocol operation. JNW2 was developed by the author of
this paper with support from Computer Science graduate

students who were at the time employed as professional
software developers. A collection of assignments,
described below, is distributed with the Java project
containing all JNW2 code except exercise solutions. The
student is able to see and, if desired, modify all of the code.
The Java packages and classes comprising JNW2 are
summarized in Table 1 in order to give educators who may
want to adopt it an understanding of the protocols it covers.

3.1 Basic Mechanisms Embodied in
JNW2

Internetting: JNW2 models an abstracted version of the
Internet architecture. Each node in the simulated network
has two integer attributes: networkNumber represents the
element in an Internet address that is used to deliver
packets to the physical network. All nodes on the same
physical network have the same value of networkNumber.
The other attribute, hostNumber, is equivalent to the host
number in an Internet address. In addition to these two,
each interface of each node has a globally unique
ifaceNumber that identifies the node’s physical address on a
serial link or LAN subnet. Other values of ifaceNumber
connect to serial links among nodes. The nodeNumber one
on each LAN is assigned to the associated network layer
router.

Discrete Event Simulation: In a computer network, many
asynchronous (unsynchronized) events occur constantly,
yet the whole network must function as a coordinated,
distributed system. Discrete Event Simulation (DES) is
widely used to study complex systems with such
properties, by abstracting for study the key distributed
system functions [5]. In JNW2, every simulated event is
discretized to a time that is represented by a long integer
value simulationTimeInTicks, a count of some basic time unit
such as microseconds. Every event happens on a specific
value of simulationTimeInTicks. The DES routines are
responsible for accounting, in an efficient way, for all
events that “have not yet happened.” Typically, the result of
an event happening is that one or more new events are
scheduled. When events “happen” they invoke Java
functions. This arrangement provides a simple mechanism
for representing the multiple, asynchronous threads of
control needed to simulate a network.

JNW2 DES Function nextEvent() causes the function for
the next event “waiting to happen” to be invoked. The top
level of the JNW2 program invokes this function
indefinitely, until the event list is empty or a time limit is
reached. The DES routines maintain a two-dimensional
linked list of events, with the first dimension ordered by
“happen time” and second dimension FIFO by order of
scheduling within a particular “happen time.” This

arrangement supports efficient event list search and
update.

Stochastic simulation: JNW2 uses pseudo-random
number generators to create two types of events critical to
behavior of networks: message arrivals and datalink errors.
Each message stream and each datalink has its own
independent stream of pseudo-random events, produced
by random number generator functions. The built-in
functions are deterministic (fixed time interval) for best-
effort and reliable messages, which are intended to reflect
the behavior of humans generating email. The Poisson
distribution (exponential inter-arrival) is used for bit errors.
JNW2 contains its own random number generators based
on the mixed congruential method [2]. The pseudo-random
number sequences are seeded individually with values that
are the same from run to run, so that the events, while they
have “random” statistics, always occur at the same point (a
considerable help in debugging). To change a random
number generator distribution, the student needs only to
provide a generator function.

Input/Output: As scaffolding for exercises, files
containing a collection of “email” inputs, the WAN topology,
and the number of hosts on each LAN are included in the
JNW2 Java project. The files use a simple text format that
can be edited by students. At the end of simulation,
summaries of the message traffic at all nodes are
automatically displayed as output. A graphic network
drawing package to create the network description files is
included. Figure 1 shows the network drawing interface.

3.3 JNW2 Exercises
The JNW2 download includes assignments and stub
modules coordinated with the project book Understanding
Internet Protocols [8], which support exercises. The book
includes cross-references to popular networking textbooks
such as [10] and [11], showing where the exercises can be
combined with textbook material. This includes studies
where the student programs:

• bit stuffing/unstuffing for frame formatting
• error detection via cyclic redundancy check

calculations
• Data Link Control (DLC) flow and error control, in

which the student programs the decision logic for
Automatic Request for Retransmission.

• Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) binary exponential backoff as used in
Ethernet for resolution of collisions

• topology matrices hand coded to describe the WAN
and use of graphic editor to produce such matrices

• network layer routing functions for route optimization
and packet forwarding

• reliable transport layer function that implements the
core logic of the sending end in a protocol abstracted
from the Transmission Control Protocol (TCP)

• slow-start sending end window abstracted from the
approach used by TCP for congestion control

Additional exercises from [8] that are planned for addition
to JNW2 are:

• token passing local area networks dealing with a
received token

• network layer routing information distribution, in which
the student programs the function that updates Link
State Advertisements

• multicast networking function that determines the set of
WAN interfaces participating in the multicast tree.

• network security filter function for a firewall
• application layer message handling function for an email

list server.
• internetworking where all previous project parts are

combined with the result that reliable transport of email
messages is interspersed with multicast stream
transmission.

4 JNW2 IMPLEMENTS
CONSTRUCTIVISM

The motivation behind JNW2 and its exercises began with
the observation that students understand network protocols
much better after they create a mental model of the
protocol workings in the process of programming them.
JNW2 therefore is intended specifically to support that
puzzling process in such a way that the student’s time
largely is devoted to issues that are central to how the
protocol works. For example, the interfaces between stack
layers are provided by the JNW2, as are the mechanics of
the discrete event simulation – students would learn little
about protocol operation by building these. The educational
philosophy involved here, that most closely aligned with
JNW2, is constructivism [1]. The following compares the
philosophy and practices associated with JNW2 to the eight
constructivist design principles set forth both by educational
pioneers Savery and Duffy [9].

1. Anchor all learning activities to a larger task or problem.
Each JNW2 exercise takes place in the context of a
complete working protocol stack, which is in turn presented
in the context of understanding how the Internet works.

2. Support the learner in developing ownership for the overall
problem or task. The student is completely responsible for
solving the problem (programming the protocol) while
JNW2 provides all supporting software. Supporting
documentation online and in [8] provides a collection of
useful programming and debugging techniques. These are
presented without specific directions so that their
employment is up to the student.
3. Design an authentic task. The protocols are real, although
simplified. Moreover, for a working solution they must
function as part of a larger whole, an interoperating
protocol stack.
4. Design the task and the learning environment to reflect the
complexity of the environment they should be able to function in
at the end of learning. Each protocol is simplified to the point
where it has just the basic properties the student needs to
understand at the completion of an introductory course. In
an advanced graduate course, the students who use JNW2
design their own protocols at whatever level of complexity
is needed for projects which they propose themselves.
5. Give the learner ownership of the process used to develop the
solution. The student programs the protocols and runs the
solutions independently. Coding, debugging and testing are
up to the student. JNW2 provides output of solutions for
comparison. (Student grades are based on correctness and
quality of their code in addition to its output.)
6. Design the learning environment to support and challenge the
learner’s thinking. The JNW2 projects become progressively
more difficult and build on what was learned in previous
projects.
7. Encourage testing ideas against alternative views and
alternative contexts. Multiple protocols exist at Datalink and
Transport layers for comparison. Also, the student can
create a completely new protocol at any layer.
8. Provide opportunity for and support reflection on both the
content learned and the learning process. The final exercise
assembles all of the student’s projects into a working
whole.

5 GRADE OUTCOMES
At our institution, JNW2 is used in introductory computer
networking courses at both undergraduate and graduate
levels. The undergraduate course is part of our ABET-
accredited program, which requires that an outcomes
analysis is performed each time it is offered. We used this
to compare outcomes for topics that are reinforced by use
of JNW2 exercises versus those topics where JNW2 does
not offer reinforcement. Exam questions deal with general

concepts in networking, not specifics of JNW2 projects.
The author has available data for a total of four such
course offerings, presented to a total of 113 students and
summarized in Table 2, which contains examination grade
averages weighted by question value. The data were
obtained by item analysis of mid-term and final
examinations supporting our ABET outcomes report.
(JNW2 is used in an introductory graduate course also, but
ABET outcomes are not reported.) In the five outcomes
where learning was reinforced by JNW2 exercises, the
students scored almost one letter-grade higher than they
did on the four outcomes not reinforced.

Table 2: Summary of JNW2-related ABET
Outcomes

Semester Number
of

Students

JNW2-
relate

d

Not
JNW2-
related

Fall 2009 26 64.6 61.3

Spring
2014

30 67.7 56.2

Fall 2014 22 78.0 72.0

Spring
2016

35 78.1 63.5

Overall 113 72.2 62.7

6 CONCLUSION
After nearly twenty years of using the approach reported
above we have concluded, both from subjective
assessment and objective analysis of outcomes, that
programming key aspects of computer network protocols
strongly reinforces student learning. Furthermore, students
often comment in course-end evaluations that they find
JNW2 to be a productive and enjoyable way to gain
understanding of Internet protocols. Moreover, we are
pleased to report that JNW2 and the associated exercises
are available as open source to all educational programs.
The current project zipfile is available at
http://netlab.gmu.edu/JNW2 and solution code will be
provided to teaching faculty who send a request to the
author under their institution’s letterhead.

REFERENCES
[1] Gruender, C. D. Constructivism and learning: A

philosophical appraisal, Educational Technology 36, 21-
29, 1996

[2] Hillier, F. and G. Lieberman, Operations Research, 2nd
Edition, Holden-Day, 1974, pp 626-628

[3] Katzela, I., Modeling and Simulating Communications
Networks, Prentice-Hall, 1999

[4] ns-3 Tutorial, http://www.nsnam.org/docs/release/3.14/
tutorial/singlehtml/ last visited 14 Jan 2017

[5] MacDougall, M., Simulating Computer Systems:
Techniques and Tools, Chapter 1, MIT Press, 1987

[6] Pullen, J.M., The Network Workbench: Network
Simulation Software for Academic Investigation of
Internet Concepts, Computer Networks Vol 32 No 3, 365-
378, March 2000

[7] Pullen, J.M., The Network Workbench and
Constructivism: Learning Protocols by Programming,
Computer Science Education Vol 11 No 1, 1-14,
September 2001

[8] Pullen, J., Understanding Internet Protocols Through
Hands-on Programming, John Wiley & Sons, January
2000 (out of print but available at
http://netlab.gmu.edu)

[9] Savery, J. R. and T. M. Duffy, Problem based learning:
An instructional model and its constructivist framework,
Educational Technology 35, 31-38, 1995

[10] Stallings, W., Data and Computer Communications (10th
Ed.), Pearson, 2014

[11] Tanenbaum, A. and Wetherall, D., Computer Networks
(5th Ed.), Pearson, 2011

Figure 1. JNW2 Network Drawing GUI, Annotated with Descriptive Overlay

