
Scripted WS
ICCRTS’11-176

1

Supporting NATO
C2-Simulation Experimentation

with Scripted Web Services

 Dr. Mark Pullen and Lisa Nicklas
George Mason University C4I Center

{mpullen,lnicklas}@c4i.gmu.edu

Scripted WS
ICCRTS’11-176

2

Presentation Overview

•  Scripted BML background
•  Scripted BML in NATO MSG-048
•  Architecture of SBMLServer
•  Publish/Subscribe for BML
•  Recent improvements to SBML

•  Conclusions

Scripted BML Background

Scripted WS
ICCRTS’11-176

3

Scripted WS
ICCRTS’11-176

4

BML Purpose and Operation

•  Facilitates C2-Simulation interoperation
– Exchange of Orders and reports in standard

format
•  Current architecture uses a repository

service to hold state submitted by client C2
and Simulation systems
– Web service with XML input – Network Centric
– Data stored in JC3IEDM and can be replicated

Scripted WS
ICCRTS’11-176

5 5

BML Architecture

Command
and

Control
Systems

Simulation
Systems

JC3IEDM
and other databases

BML Messages
(Orders, Reports, etc.)

BML Web Services

Scripted WS
ICCRTS’11-176

6

Original BML WS Architecture

!

Scripted WS
ICCRTS’11-176

7

Why Scripted WS
•  Middleware functions don’t change

–  Mapping BML to JC3IEDM and push/pull to database
–  Program these once and get them right

•  Interpreted WS offers flexibility
–  Rapid implementation of new BML constructs
–  Easy to modify underlying data model

•  MIP standard also continues to change
–  Reduces time and cost for prototyping
–  Scripting language provides a concise definition of BML-to-data

model mappings
–  Although bugs still happen, the number of possible mistakes is

far smaller
•  Scripted operation may, however, be slower

–  Multithreading helps this
–  But a hard-coded implementation is likely to perform better

Scripted WS
ICCRTS’11-176

8

JBML mapping to JC3IEDM

Schema field <What>

Schema Reference:

<xsd:complexType name="CommandType">

 <xsd:sequence>

 <xsd:element name="What"
type="GroundBMLWhatType"/> …

action-task
action-task-id (FK)

category-code

activity-code

reference
reference-id

content-category-code

action-reference-association
action-id (FK)

reference-id (FK)

action-reference-association-index

category-code
action
action-id

category-code

Where content-category-
code is set to

‘ORDER’ (‘ORDER’)

The category-code value will be
set to ‘ACTION-

TASK’ (‘ACTTA’)

Used as the <OrderId>

The category-code value will be
set to ‘Is directed
by’ (‘ISDSCR’)

category-code is set to
‘ORDER’ (‘ORD’)

<What>

1

2

The Old Way: IDEF1x Mapping Definition

Not machine readable though highly structured
Script is a concise XML coding of this

Scripted WS
ICCRTS’11-176

9

Scripted BML WS Design
•  Basic operations: push and pull

–  Currently, servers for SQL and RI databases
–  Scripts implement BML Orders and Reports

•  Script defines implementation of Business Objects
(constituents of the higher-level BML grammar)
over the JC3IEDM data model
–  BO is an XML subtree rooted at a defined node in the

XML file – can invoke other BO
•  Interpreter uses two files plus WS input

–  Mapping file contains script
–  BML schema file provides necessary context
–  XML namespace capable

MSG-048 2009 Architecture

BMLC2GUI
ICCRTS’11-175

Scripted WS
ICCRTS’11-176

11

Scripted BML WS Configuration

Two implementations: MySQL and SIMCI RI

J2EE Application
Server

Scripted WS
ICCRTS’11-176

12

Polling vs Publish/Subscribe
•  “Pure” Web Service is always accessed by push or pull

transaction from client
–  No provision for server to initiate action

•  For clients to stay up to date they must pull latest status
from server at rate determined by their need for up-to-date
information (called polling)
–  Result: MSG-048 server in 2008 spent most of its time responding

to status pulls
•  Publish/subscribe gets around this by letting clients

identify the categories of information they need – they
subscribe to Topics
–  Server sends them a copy of every update associated with each

subscribe Topic
–  More timely updates and a dramatic reduction in overhead

Scripted WS
ICCRTS’11-176

13

Publish/Subscribe Architecture

Advantages of Publish/Subscribe
•  Avoids inefficiencies:

–  Server must re-read information written to database
–  Redundant polling
–  Separate server cycle needed for each client

•  Implements effective distribution
–  Create a Topic for each interest category
–  Clients subscribe by Topic
–  Server automatically forwards transactions matching

the Topics
•  However, our implementation of publish/

subscribe used by MSG-048 has static topics
Scripted WS

ICCRTS’11-176
14

Scripted WS
ICCRTS’11-176

15

Publish/Subscribe Dynamic Topics

•  Topic assignment
•  MSG-048 experimentation was the largest BML

coalition to date, so we kept it simple
•  Topics were chosen in advance and coded in server

•  Dynamic topics
•  More powerful approach allows Topics to be assigned

at runtime
•  Implemented using JMS Message Selectors working

through a single static Topic
•  Client defines interest using XPath

Message Selectors for Dynamic Topics

Scripted WS
ICCRTS’11-176

16

!

!

Sample msgSelectors XML
<?xml version="1.0" encoding="UTF-8"?>!
<Message>!
 <Selector>!
 <name>allGSR</name>!
 <search>//TypeOfReport[. = 'GeneralStatusReport']!
 </search>!
 </Selector>!
 <Selector>!
 <name>allOrder</name>!
 <search>//OrderPush</search>!
 </Selector>!
 <Selector>!
 <name>allSIMCI</name>!
 <search>/*[contains(name(),'REP')]</search>!
 </Selector>!
</Message>!

Scripted WS
ICCRTS’11-176

17

Recent Improvements to SBMLServer

Scripted WS
ICCRTS’11-176

18

Pushing a Complete Thought in JC3IEDM
•  MIP provides recommended usage for JC3IEDM

–  “A database update or query must constitute a
complete logical military thought.”

•  JC3IEDM 3.0.2 Annex O. 5/14/2009

•  We understand this to mean all the data about a
business object (composite) should be completed at
the same time
–  Don’t push incomplete data to database

•  We’ve added terms in scripting language to define a
complete thought and an SBML mechanism to
consolidate the push
–  ri_start and ri_end

Scripted WS
ICCRTS’11-176

19

BML Namespaces

•  SBML must parse XML input
–  Both BML itself and script are XML
–  Should comply with W3C specifications

•  This was hard to do, so deferred initially
–  Now we have completed it
–  Done by mapping BML to various schemas from

which it is assembled
–  Allows validation of BML/XML with namespace

•  Existing scripts have been modified to use
namespaces correctly

Scripted WS
ICCRTS’11-176

20

Multithreaded Operation in SBML
•  A known disadvantage of XML is its verbosity
•  Results in a lot of network traffic and contributes to

performance problems
–  Parsing and SOAP processing also take time

•  When message volume is high, this can be offset
somewhat by multithreading
–  SBML designed to support experiments not production
–  But even in experimental environment performance may be

needed
–  So we’ve revised SBML code to work multithreaded

•  Latest achievement:
–  About 10 Reports/second with 8 processors on lab server
–  Would expect this to scale to at least 16 processors

Scripted WS
ICCRTS’11-176

21

Logging/Replay in SBML

•  Logging/replay is very useful in development and
experimentation
–  Allows exact review and comparison of results
–  May be used to repeat input sequences for testing

•  Initial SBML had only console log
–  Could capture transactions but they were difficult to extract

•  We’ve added input/output logging to SBMLv2.4
–  And a replay client to regenerate traffic

•  We expect this functionality will grow as users find ways
it should be enhanced

Scripted WS
ICCRTS’11-176

22

Scripted WS
ICCRTS’11-176

23

Condensed Scripting Language

•  Coding the script in XML makes parsing simple
•  But XML is verbose and thus hard to read
•  We’ve defined a condensed format which is

isomorphic to the XML script and thus simple to
translate
•  Intended to invoke business objects that produce a
“complete thought” in JC3IEDM

•  The result is more modular as well as much more
readable

•  So we needed a mechanism to make this work

Where CSL Fits in SBML

Scripted WS
ICCRTS’11-176

24

CSL
Script

CSL
Translator

Scripted WS
ICCRTS’11-176

25

Condensed Scripting Language Example
part one

 BOInput
{
 BOTransaction WhatWhenPush(...
 {
 //fragment from WhatWhenPush
 Call TaskeeWhoPush TaskeeWho (task_act_id) () ;
 ...
 }

Scripted WS
ICCRTS’11-176

26

Condensed Scripting Language Example
part two

BOTransaction TaskeeWhoPush (task_act_id) ()
{
 GET unit unit_id (formal_abbrd_name_txt EQ UnitID);
 PUT act_res (
act_id EQ task_act_id,
act_res_index EQI act_res_index, cat_code EQ "RI",
authorising_org_id EQ unit_id) ;
 PUT act_res_item (
act_id EQ task_act_id,
act_res_index EQ act_res_index,
 obj_item_id EQ unit_id) ;
 BOReturn
 {
 BOReturnElement
 {
 Tag Result "OK";
 }
 }
}

OPORD Schemas for SBML
•  Recent Army CIO/G6 project supported detailed

BML architecture
–  See http://c4i.gmu.edu/BML

•  This included a five-paragraph OPORD based
on earlier work done for AGC
–  Significantly more detailed than MSG-048 schema
–  Also posted SBML script – see webpage

•  Ongoing SIMCI converting this to NATO OPORD
–  We have provided SISO C-BML Light compliant script

for NATO OPORD
–  Also SISO C-BML Full but without JC3IEDM support

Scripted WS
ICCRTS’11-176

27

RESTful Services
•  Representational State Transfer (REST)

–  More efficient because it does not use SOAP

–  Our measurements indicate 15% improvement

•  Client Language flexibility
•  Jboss supports both SOAP and RESTful messaging

•  RESTful supports any subscriber that has access to a
HTTP client library

•  This will avoid need to use Java Native Interface
intermediary on C++ clients

Scripted WS
ICCRTS’11-176

28

Scripted WS
ICCRTS’11-176

29

Conclusions
•  Scripted BML WS served well as development

tool for NATO MSG-048
–  Enables developing reliable services more rapidly
–  Open source http://netlab.gmu.edu/OpenBML
–  Offered Reference Implementation for SISO C-BML

•  Many improvements, inspired by NATO
experimentation needs, have made SBML
Server more useful and robust

•  We look forward to continued improvements
supporting NATO MSG-085

