Implementation of Host-based Overlay Multicast in Support of Web Based Services for RT-DVS

Dennis Moen, Mark Pullen & Fei Zhao George Mason University {dmoen,mpullen,fzhao}@gmu.edu

Network Service Requirements for Real Time Distributed Virtual Simulation

- Network Quality of Service (QoS)
 - end-to-end capacity, latency, jitter, and packet loss in a statistical sense
- Multicast
 - many-to-many group communication
- Reliable Multicast Transport
 - high confidence of delivery
- End-to-end network status and performance monitoring
 - need to know what the network is doing for you
- Multi-sensor systems
 - must manage streaming data with low latency

Internet Multicast Services Today

- IP multicast over the Internet not widely deployed
- IETF initial focus is on one-to-many multicast
- Commercial viability lacking for IP multicast in the Internet
- Result: interest in multicast based on end systems not network
 - End-to-end argument: push complexity up the stack
 - Example: TCP is complex, IP is simple

Overlay Multicast Tree

XOM Overlay

XOM Layers

Generic Class Definition Interface (SRMP Example)						
Routing	Group Management	Registry		Routing Table		
		Join/leave				
		Security				
		Address				
	Path Management	Capacity/latency				
		Node Demand				
		Path Optimization				
	Packet Send/Receive Distribute Messages	Listen to Ports		s QoS/ ueing		
UDP						
IP						

XOM Group Membership

Application B sending implies routing to group $G_3 = \{G_1, G_2\}$

Group Aggregation Overlay (Optimum Path Overlay)

Multicast Groups

Aggregate Trees

Group	Members	<u>Tree</u>	Tree Links (arcs)
g_0	XOM _{1,2,3,4}	T_0	1-4, 4-2, 4-3
g_1	XOM _{1,2,3,4}		
g_2	XOM _{1,2,3}		
g_3	$XOM_{1,2}$		

Groups g_0 , g_1 , g_2 , g_3 share one aggregate tree T_0 . T_0 is a perfect match for g_0 and g_1 , but is a leaky match for g_2 and g_3 . Trades off path utilization inefficiency for lower path management overhead.

Overlay Routing Constraints

XOM Functional Model

Prototype Test Scenario

XOM Prototype

XOM Lab Test Scenarios

Test 1. XOM *n*-degree of 3

Test 2. XOM n-degree of 2

Message Delay

Message Loss Ratio

Conclusions and Future Work

Initial results indicate overlay networking is a promising strategy for providing many-to-many multicast in the open network environment of DS-RT.

We are working on an architecture specification based on the properties of distributed simulation traffic plus recent networking research.

NPS is working on a Web-service-based registry and routing information system.