
Published in the Proceedings of the 1999 Western Simulation Multiconference
Conference on Simulation of Computer Networks and Distributed Systems

DISCRETE EVENT SIMULATION OF CSMA/CD LOCAL AREA NETWORKS
IN THE NETWORK WORKBENCH

J. Mark Pullen
Department of Computer Science and C3I Center

George Mason University
Fairfax, VA 22030
mpullen@gmu.edu

KEYWORDS: local area networks, media access control,
discrete event simulation

ABSTRACT

The Network Workbench is a new software simulation
system that implements a 5-layer Internet-like stack with
Discrete Event Simulation (DES). The Workbench uses a
simple paradigm that it easier to learn and apply than that of
the more complex simulation systems in common use today,
which makes it very attractive for use in an academic
environment for both introductory courses and advanced
graduate projects of moderate complexity. This paper
reports on the Medium Access Control (MAC) sublayer
recently added to the Workbench. The internal structure of
the Workbench and its implications for the MAC simulation
are described. A critical problem is the inability to
“unschedule” and event in the Workbench DES. The
mechanisms we have developed to simulate the highly
parallel, completely distributed Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) under this
limitation are explained in detail.

BACKGROUND: NETWORK WORKBENCH

The author, assisted by various George Mason
University (GMU) students, has created a collection of C++
modules that facilitate student investigation of network
protocols. The Network Workbench consists of executive
routines, a Discrete Event Simulation (DES) module,
input/output modules, and a protocol stack abstracted from
the popular TCP/IP (Internet) protocol family. As with other
network simulation systems, the Workbench provides an
environment where experiments can take place safely
removed from the complications of hardware configurations
and other users’ network traffic. However, unlike more
complex, powerful simulation environments such as the
Optimized Network Engineering Tools system (OPNET)

(Katzela, 1999) and ns (see http://www-
mash.cs.berkeley.edu/ns/ns.html), the Network Workbench
is intended as an experimental environment for students. By
its design it is easier to learn and apply than the other
systems cited.

The Workbench has been used successfully to teach
basic protocol algorithms, and as an environment for
graduate research involving networks of moderate
complexity. Most code modules are available both as pre-
compiled binary modules and C++ source code. Modules
that are to be programmed for student assignments are
available as C++ “stub” code, with correct interfaces but no
function, and as precompiled binary modules that work and
thus can be used to demonstrate correct network operation.
The stub versions have complete linkage, consistent with the
header files, and comments outlining the general approach
taken by the related TCP/IP protocol, but no code
implementing the protocol algorithm. Designing and coding
implementations to complete the shell versions is a valuable
learning exercise for students, because it requires them to
consider the core algorithms of the protocol, implement the
algorithms, and understand the result well enough to test its
operation. When the Workbench runs, it creates a
simulation of a network using the student-programmed
protocols, passing the "email" data files provided. Using the
Workbench also can be an effective strategy for some
graduate research because it requires a much smaller
“learning curve” time investment than more sophisticated
tools, so long as the complexity of the networks and
protocols falls within the capabilities of the Workbench.

The Network Workbench has grown over several years
from a research prototype to a useful piece of courseware,
and more recently to a sizable piece of software that fills a
range of teaching and research needs. Beginning as a
research prototype created in the GMU Center for the New
Engineer, the Workbench was

expanded to working courseware that was useful but
not particularly adherent to any software or networking
standards, which was used to teach undergraduate Senior

and graduate Master’s level introductory networking
courses. Beginning in Fall 1997 the author rebuilt the
Workbench “from the ground up” to enable its use as a

research platform for Internet-related protocols. This re-
written, rationalized and object-oriented Workbench has
been used successfully by doctoral students to create course
projects in areas such as reliable multicast transport, well
beyond the introductory projects packaged with the
Workbench. The Network Workbench was further
expanded by the author in Summer 1998 to support an
internetting model, including LANs, that abstracts the key
aspects of the Internet Protocol Suite while avoiding much
of its complexity. Currently a set of eight student projects is
available, in topic areas network topology, error detection,
datalink control (DLC), media access control (MAC),
routing, reliable transport, multicast, and internet
integration. It is common for students to praise the
educational value of the Workbench in course-end reports
and critiques. The Network Workbench is available for
download with no-cost license for academic use at
http://bacon.gmu.edu/networkbench.

NETWORK WORKBENCH MECHANISMS

Protocol Stack

Figure 1 shows the general structure of the
Workbench. In addition to the header files, "main" module,
DES module, and input/output modules, there is an
initializing module and a module "interlayer" through which
control passes for every invocation of a protocol stack
module. The interlayer module contains a series of

messages that can be switched on or off by layer, permitting
a flow trace of information being passed from layer to layer
in the protocol stack. The interlayer module also collects
statistics that are printed in summary at end of the
simulation. Figure 2 shows the protocol stack used in the
Workbench. It is very similar to the 5-layer Internet stack,
and includes simplified versions of TCP, UDP, IP, HDLC,
and Ethernet.

Internetting

The Workbench models an abstracted version of the
Internet architecture. Each node in the Workbench network
has two integer attributes: netnum (equivalent to the Class
A, B or C network number in an Internet address) and
nodenum (equivalent to the host number in an Internet
address). Each interface of each node has three integer
attributes: netnum and nodenum (inherited from the parent
node) and ifacenum (which uniquely identifies the interface
within the node). ifacenum=0 is assigned to the node's
interface to its LAN (subnet). All nodes on the same LAN
have the same value of netnum. Other values of ifacenum
connect to serial links among nodes. By convention, within a
LAN ifacenum=255 indicates a broadcast address that is
received by all nodes on the LAN, ifacenum=254 indicates a
multicast address and nodenum=1 is the router that
interconnects the LAN to other internetted LANs. There is
no WAN broadcast function, but WAN multicast occurs

compiler.h
wkb.h

main:
initialize:

DES/
net state/
messages

loop until
no more
events

appl
send

trans
send

net
send

dlc
send

phys
send

appl
receive

trans
receive

net
receive

dlc
receive

phys
receive

interlayer
(collects
statistics,

prints
data)

schedule
DES event

update
event list

“email”
message file

 message
out

WKBn

diskout.txt
copy of
output

output
statistics

Fig. 1. Network Workbench System Architecture

when netnum=254. Each interface in the Workbench has a
globally unique eight-bit DLC layer address or “port
number”, which is used to identify that interface in DLC and
MAC frames much like an Ethernet address. The
first2*nlinks addresses identify the ends of WAN links;
subsequent addresses are assigned to LAN interfaces. These
conventions, and also the fact that addresses are associated
with nodes rather than interfaces, are considerable
simplifications on the Internet architecture. Nevertheless the
author has found that while they simplify the Workbench
considerably, they do not cause unacceptable deviations
from the basic concepts of the Internet protocols.

--------------------application layer----------------
best-effort multicast reliable

---------------------transport layer-----------------
 best-effort reliable

--------------------network layer-------------------

----------------datalink control layer--------------
best-effort reliable MAC

---------------------physical layer-------------------
 synchronous serial CSMA/CD

Fig. 2. Network Workbench Protocol Stack

Discrete Event Simulation

In a computer network, there are many asynchronous
(unsynchronized) events occurring constantly, yet the whole
network must function as a coordinated, distributed system.
Discrete Event Simulation (DES) is widely used to study
such complex systems by abstracting the key distributed
system functions (MacDougall, 1987, Chapter 1). In the
Workbench, every simulated event is discretized to a time
that is represented by an integer value sim_timer that is
considered to be a count of some basic time_step such as
microseconds. Every event happens on a specific value of
sim_timer. The DES routines are responsible for
accounting, in an efficient way, for all events that “have not
yet happened”. When events “happen” they invoke C++
functions with four parameters: netnum, nodenum, ifacenum,
and a generic arguments which points to a protocol data unit
(message, segment, packet, or frame). If for example a
transport layer segment is to be sent, invoking function
tl_to_nl(parms,1) would cause invocation of function
trans_send(parms) on node 1's host, 10 sim_timer ticks from
“now” (that is, the current value of sim_timer plus 10).

Typically the result of an event happening is for one or more
new events to be scheduled.

DES Function next_event() causes the function for the next
event “waiting to happen” to be invoked. The top level of
the Workbench program consists of invoking this function
indefinitely, until the event list is empty or a time limit is
reached. The DES routines maintain a two-dimensional
linked list of events, with the first dimension ordered by
“happen time” and second dimension by order of scheduling
within a particular “happen time”, allowing efficient list
search and update. After an event is scheduled, the
Workbench DES has no mechanism for “unscheduling” it.
This fact has significant implications for simulation of
CSMA/CD, as will be seen below.

Stochastic Simulation

The Workbench uses random number generators to

create two types of event critical to behavior of networks:
message arrival and datalink errors. Each message stream
and each datalink has its own independent stream of random
events, which are generated by functions that can be
replaced by the user. The built-in functions are deterministic
(fixed time interval) for best-effort and reliable messages,
and Poisson (exponential inter-arrival) for multicast traffic
and bit errors. The random number sequences are seeded
individually with values that are replicated from run to run,
so that the events, while “random,” always occur at the
same point, to facilitate debugging. To change the
distributions, the student needs only to provide generator
functions of the same names.

Input/Output

The “email” inputs, WAN topology, number of hosts
on each LAN, and multicast topology are contained in files
with simple text format that can be edited by students. The
interfacing “interlayer” module collects statistics on
invocation of the various layers in the Workbench, and also
contains a trace function that can be switched on and off at
any layer by student-provided modules during execution in
order to observe protocol operation. There is a set of user-
defined output functions that can be supplemented to
provide any desired output when interlayer() is invoked.
There also is an interactive mode that limits the text output
into chunks small enough to fit on a screen. At end of
simulation the inter-layer statistics are automatically
displayed to the screen. Text output to the screen also is
recorded in file diskout.txt. A graphic run-time output
display is now under development.

CSMA/CD PROTOCOL

 The basic protocol of an Ethernet LAN is Carrier
Sense Multiple Access / Collision Detection (CSMA/CD).
In this protocol, each LAN interface implements a
distributed algorithm intended to assure fair access to the
LAN medium without any central coordination. The
textbook definition of CSMA/CD is (Stallings, 1997):

1. if the medium is idle, transmit; otherwise go to step 2

2. if the medium is busy, continue to listen until the

channel is idle, then transmit immediately

3. if a collision is detected during transmission (that is,

two interfaces try to transmit simultaneously), transmit
a brief jamming signal to ensure that all stations know
there has been a collision, then cease transmission

4. after transmitting the jamming signal, wait a random

amount of time, then repeat from step 1

The “random time” is derived by binary exponential backoff
(Tanenbaum, 1996):

1. after the first collision, wait either 0 or 1 time slots
(with equal probability) to transmit

2. after the second collision, wait 0,1,2 or 3 time slots

3. after the nth collision wait 0 to 2n-1 time slots.

4. limit n to 10 (0 to 1023 time slots)

5. after 16 collisions, report failure to the sending process

SIMULATING CSMA/CD

Using DES, it is simple to simulate the behavior of a
deterministic or stochastic process, the outcome of which is
be uniquely determined by data known at the time the
process is started. For example, the transmission of a data
frame over a point-to-point serial link requires only a
calculation of the time the frame will require to transit the
link, the sum of speed-of-light (propagation) delay plus the
frame length divided by the link capacity. For propagation
velocity v, distance d, frame length l, and link capacity C
this is:

t = d/v + l/C

Thus a DES event can be scheduled for time t with
assurance that the behavior or the serial link will be modeled
correctly. If a noisy link is being simulated, an appropriate
sequence of random numbers can be generated and used to

corrupt bits in the frame at transmit time so they “arrive”
corrupted.

 Simulation of CSMA/CD is more difficult because
events which may happen during frame transmission are not
known when the process starts. Each MAC interface has
processing capability, and any of them might at any time
sense a collision and send a jamming signal which would
interrupt the current transmission of all other connected
interfaces. Thus simulation of CSMA/CD requires that the
model for each interface check the function of all other
interfaces whenever any event related to transmission
occurs. In preparing to add a LAN simulation to the
Workbench, two leading network simulation systems were
checked to determine how they achieve this. OPNET
models CSMA/CD by literally modeling its physical
process: each LAN frame is presented in turn to each MAC
interface, to determine if a collision will occur. ns on the
other hand, while it is an admirable network simulation
system, turns out not to have a LAN model yet. (Our
experience in adding a LAN model to the Workbench
revealed difficulties in simulating CSMA/CD which may
explain why ns has not yet included this function.)

 While noting that the approach taken by OPNET is
effective and produces correct results, we also sought a
model of CSMA./CD (“Ethernet”) that would take less time
to simulate while remaining correct within the scope of the
Workbench’s abstractions. We used a scheme similar to that
of (MacDougall, 1987, chapter 6) but with significant
adaptation to account for the fact that our CSMA/CD must
function as part of a working network simulator
(MacDougall’s ether simulation is limited to producing
statistics for a generic Ethernet LAN). We were able to
create a workable CSMA/CD simulation in the Workbench
by maintaining two global variables for each LAN,
frame_start_time[] and frame_finish_time[],each indexed
by netnum. When an interface prepares to send a LAN
frame, the MAC process consults frame_finish_time and
arrives at one of three courses of action:

1. frame_finish_time is already past, so transmit the frame,

updating the LAN state variables frame_start_time and
frame_finish_time, and interface state
mac_buffer[portnum].current_frame

2. frame_start_time is within one propagation delay on the

LAN, so a collision may occur
3. frame_start_time has passed by more than one

propagation delay, and frame_finish_time has not yet
arrived; so invoke the DES to return to the sending
process at frame_finish_time

Within case 2, some means of determining whether a
collision actually occurs is needed. The options are:

a. assume a collision will always occur (this is equivalent to

assuming the station being checked is at the opposite end
of the LAN medium from all other stations)

b. treat collisions as stochastic events and generate a

uniformly distributed random number between zero and
one propagation delay to determine whether a collision
occurs

c. assign a physical position on the LAN to each interface,

and calculate the collision interval exactly; if the
interface being checked is separated from the interface
which sent first by length d, and the propagation velocity
in the medium is v, a collision occurs when for

 lan_delay = (d / v) * time_step

 the following holds:

lan_delay < sim_timer - frame_start_time[netnum]

 The current workbench implementation follows the
first option for simplicity. (This has the effect of generating
a maximum number of collisions, which is useful in a
student exercise, but it is less than completely accurate.
However options b and c also are viable, and would not be
complex to implement.)

 When a collision occurs, the mac_send() function
invokes jam_csma() to broadcast a short “jamming frame,”
indicated by starting flag 00111110 (good frames start with
01111110). When the jamming frame reaches mac_receive()
by way of the DES, retransmission is scheduled by creating
a new DES event that will invoke mac_send() which will
begin to transmit mac_buffer[send_portnum].current_frame
again. Like several other Workbench protocol functions,
mac_send() is organized into multiple sending states
structured by a state-transition diagram (figure 3) with a
state variable that maintains continuity between invocations.
To ensure that the next state associated with mac_send() is
not destroyed by intervening events, it is stored as
mac_state_bits and passed along with the frame through the
DES.

 Because the Workbench does not support
“unscheduling” events, mac_receive() necessarily will be
invoked for frames that in fact were destroyed by collisions.
Therefore mac_receive() must verify that each frame
received is still valid. It does this by consulting
mac_buffer[send_portnum]. All of this activity is by way of
ensuring correct results while efficiently simulating within
DES under the Workbench a highly parallel, distributed
function.

start

send
frame

frame
sent

collision

M AC
BACKOFF

backoff
applied

M AC
READY

M AC
SEND

COMPLETE

M AC
W AITING

LAN
busy

LAN
idle

Fig. 3. Workbench MAC Send State-Transitions

CONCLUSIONS AND FUTURE WORK

This paper has described the Network Workbench, a new
network simulator intended for student use in introductory
courses and also in research projects involving networks of
moderate complexity. The Workbench uses DES to
implement a five-layer protocol stack abstracted from the
Internet architecture, and includes a collection of projects
where students program the core algorithms for important
protocols such as HDLC, IP, and TCP. The latest additions
to the Workbench are an internetting architecture and an
accompanying model for Ethernet-like CSMA/CD LANs.
Algorithms that implement CSMA/CD efficiently using the
Workbench DES are described.

The Network Workbench has been demonstrated to be an
extremely useful tool in teaching both introductory network
courses at undergraduate and graduate levels, and an
advanced graduate-level project-based course. Toward this
end the Workbench software will be made available to other
teaching faculty on request, under a no-cost license. Future
additions to the Workbench are likely to include additional
WAN protocols such as a routing protocol, and additional
LAN protocols such as token ring, token bus, or Fiber-
Distributed Data Interface (FDDI).

REFERENCES

Katzela, I. Modeling and Simulating Communications
Networks, Prentice-Hall, 1999

MacDougall, M., Simulating Computer Systems: Techniques
and Tools, MIT Press, 1987

MASH project, University of California-Berkeley,
http://www-mash.cs.berkeley.edu/ns/ns.html

Stallings, W, Data and Computer Communications, 5th Ed.,
pp. 404-406, Prentice-Hall, 1997

Tanenbaum, A., Computer Networks, pp. 282-283, Prentice-
Hall, 1996

ABOUT THE AUTHOR

J. Mark Pullen is an Associate Professor of Computer
Science and a member of the C3I Center at George Mason
University, where he heads the Networking and Simulation
Laboratory. He holds BSEE and MSEE degrees from West
Virginia University, and the Doctor of Science in Computer
Science from the George Washington University. He is a
licensed Professional Engineer and a Fellow of the IEEE.
Dr. Pullen teaches courses in computer networking, and has
active research in networking for distributed virtual
simulation and networked multimedia tools for distance
education. Dr. Pullen recently received the IEEE's Harry
Diamond Memorial Award for his work in networking for
distributed simulation.

