In this exercise you will use a packet sniffer on a Linux system to show the contents of network traffic from two terminal programs.

A sniffer is a program that can capture any traffic on a network interface (for example, the Ethernet interface) and display its contents. The traffic does not have to be intended for delivery to the computer running the sniffer. The sniffer program tcpdump is widely used with Unix/Linux.

telnet is a remote terminal emulator that is widely available on Internet computers including Linux and Windows systems. It provides a remote command window for a Unix computer. You can for example login to osf1.gmu.edu via telnet.

SSH is a telnet-like program with better security features. You can also ssh to osf1.gmu.edu.

tcpdump, telnet and ssh are available on the Linux computers at the PW lab for IT441. telnet and ssh also are available on the Windows computers in that lab. It also has telnet and ssh servers. Normally, running tcpdump requires root privileges; however, the lab system has been set up for IT441 use to allows students, as ordinary users, to perform tcpdump.

The general approach for this lab will be to run tcpdump in a mode where it captures only traffic to and from the computer it is running on, then to login to that computer (from another computer) using both telnet and ssh, and compare the resulting tcpdump data.

Lab Steps:

The work for this lab must be done using the IT441 lab set-up at the Prince William campus. Note, however, that labs 3 and 4 can done consecutively, in one visit to this lab.

(1) Be sure you are logged into the machine reserved for IT441 in the PW lab, so you can run tcpdump. The command tcpdump -n -X port 23 will capture Ethernet frames on the console. -n means show addresses in IP number format (dotted decimal); -X means list each frame in hexadecimal and ASCII; port 23 means listen only to traffic for TCP port 23 (the telnet port).

(2) Collect a trace of telnet traffic as follows:
 a. Determine the IP address of the Linux computer using ifconfig as in earlier labs.
 b. Run tcpdump -n -X port 23 on the Linux computer.
 c. Start telnet on a Windows computer in the lab, using Start → run and entering telnet x where x is the numeric IP address of the Linux system.
 d. After login, type ls (lower case ‘L’ not ‘I’) in the telnet session to list the login directory.
 e. Type control-C on the Linux computer to terminate the tcpdump.

(3) Review the traffic you have captured, and copy the sequence from login through the ls output to your report. There will be a lot of packets because each key stroke generates one packet; you should look carefully to find the key pressed in each. To include them in your report, you can start a text editor on Linux using Accessories → Text Editor, then copy text from the tcpdump Linux window (highlight [select] using the mouse, then Control-C to copy and Control-V to paste). The file can be written to a diskette for transfer.

(4) Repeat steps 2 and 3 using ssh on the Windows computer, with tcpdump -n -X port 22. Many of the frames you capture in this case will be ACKs between the Windows SSH client and Linux SSH server; you should save only one sample of the ACKs for your report. Concentrate on
the login sequence and ls response.)

Lab Questions:

1. Compare the login sequences; look for your password in the tcpdump data. Can you find it in the telnet data? Can you find it in the ssh data? What do you conclude about the authentication security of the two terminal clients?

2. Compare the ls output in the tcpdump data. Can you see the output in the telnet data? In the SSH data? What do you conclude about the data security of the two terminal clients?

3. Explain why IT&E does not allow telnet login on its lab computers.

4. Hackers often install a sniffer on a compromised computer system. Suggest a likely reason for this.