Last Time:

- servers
 - addresses, of interfaces
- sockets and ports, sample programming basics
- transmission
 - doing ‘work’ at a distance, requires power
 - simple overview of analog signal properties
- wire as transmission medium
 - characteristics
 - advantages
 - obstacles, impediments
This Time

- other transmission media & their characteristics
 - fiber (short-, long-haul)
 - RF (microwave, satellites)
- basic message unit
 - that we’re interested in
- the Internet

Power in Numbers

- basic model:
 - sender
 - receiver
 - signal carrying message
 - (original signal + transmission artifacts) carrying message
Power in Numbers

- suppose receiver needs SNR of at least 3 dB to ensure correct interpretation of input signal

- suppose we know noise power at receiver is 15 mW
- how powerful must signal be at receiver for good results?

Power in Numbers

- does this mean that sender needs only send out 30 mW of signal power?

- ‘wire’ causes loss of signal power independently of noise
 - so signal is weaker arriving at receiver than when it left sender

- suppose we know ‘wire’ reduces signal power by factor of 4; how much power must sender use to ensure satisfactory SNR at receiver?
Power in Numbers

- $-6 = \frac{\text{gain}_{\text{dB}}}{10 \log_{10}} = \frac{\text{measured power}}{\text{reference power}}$

Power in Numbers

- does this mean that sender needs only send out 30 mW of signal power?
- knowing loss over wire, 30 mW at sender becomes 7.5 mW at receiver
 - so SNR at receiver is -3 dB
- so sender needs to send 120 mW to ensure adequate signal at receiver
- or ...
Power in Numbers

- insert amplifier in ‘wire’:

- use of logarithms in ratios of powers lets us simply add:
 - so sender → receiver ‘wire’ has net gain of −2 dB

Transmission Media: Fiber

- instead of electrical signaling, use light:
 - pulses
 - variation in intensity
- how propagated?
 - TIR: total internal reflection
Transmission Media: Fiber

- suppose you have two media A and B
 - have different optical densities
 - the interface is where the two media contact each other
 - light travels slower in more optically dense medium

Transmission Media: Fiber

- light arrives at interface at some angle α_i
- some of the light energy:
 - reflects at angle α back into medium A
 - refracts onward, across interface, at angle β
Transmitting Media: Fiber

- if:
 - medium B much more optically dense than medium A
 - we choose α, carefully, then:
 - 'all' of the light energy:
 - reflects back at angle α back into medium A
 - total internal reflection: TIR

Diagram:

- Fiber
- Ultra-pure glass
- Cladding around fiber
- Light inserted into one end of fiber
- Propagates by TIR along fiber and emerges at other end
Transmission Media: Fiber

- simplest fiber: *step-index multimode*
 - finite number of angles at which light is accepted

- core diameter: 50 to 62.5 microns
 - usually LED driven
- problem: modal dispersion

Transmission Media: Fiber

- problem: modal dispersion
- solution: mitigate using *graded-index multimode fiber*
 - cladding has gradient refractive index, less dense farther from center
 - light travels faster in less dense medium
Transmission Media: Fiber

- problem: modal dispersion
- solution: eliminate completely using single mode fiber

- much smaller diameter fiber: 8 to 10 microns
 - driven by LD

Transmission Media: Fiber

- characteristics:
<table>
<thead>
<tr>
<th></th>
<th>850 nm</th>
<th>1300 nm</th>
<th>1550 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>db/km</td>
<td>3</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- bandwidth drops with distance (mostly because of modal dispersion)
- typical bandwidth for fiber:
 * few hundreds MHz for standard multimode
 * few thousands MHz for single mode
- losses with bends in fiber
 * no bend have radius < 1 inch
Transmission Media: Fiber

- cable:
 [Image of fiber optic cable construction](http://www.arcelect.com/fibercable.htm)

- LDs:
 - single λ
 - commonly: 850, 1310, 1550 nm
 - power typically in 100s of mW (can be 1000s)
 - needs temperature stabilization
 - high speed
 - can reach switching speeds of 1000s of MHz
 - limited life span
 - small area of illumination
 - expensive

Transmission Media: Fiber

- LEDs:
 - not so purely monochromatic
 - comparable power
 - no special infrastructure
 - medium speed: several hundred MHz
 - very long lifespan
 - large area of illumination
 - really inexpensive

Transmission Media: Fiber

- usually packaged as “coupled” sources
 - LD switching circuitry
 - thermal stabilization
 - optical coupling
- may be simple “in-line” for shorter distances

http://www.agilent.com
http://www.edmunds.com
Transmission Media: Fiber

- Receivers for fiber: more generic
 - Photodiode based, typically

Transmission Media: Fiber

- Connectors:

<table>
<thead>
<tr>
<th>Fiber Connector Styles</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST Connector</td>
</tr>
<tr>
<td>SC Connector</td>
</tr>
<tr>
<td>PC Connector</td>
</tr>
<tr>
<td>SMA Connector</td>
</tr>
<tr>
<td>E200 Connector</td>
</tr>
<tr>
<td>SC-Quad Connector</td>
</tr>
<tr>
<td>ST-Quad Connector</td>
</tr>
<tr>
<td>E200-Quad Connector</td>
</tr>
<tr>
<td>LC Connector</td>
</tr>
<tr>
<td>SC-LC Connector</td>
</tr>
<tr>
<td>E200-LC Connector</td>
</tr>
<tr>
<td>SC-Quad-LC Connector</td>
</tr>
<tr>
<td>E200-Quad-LC Connector</td>
</tr>
</tbody>
</table>

http://www.arcelect.com/fibercable.htm
Transmission Media: Fiber

- splices: problem because disturbs optical properties of medium, reflectivity
 - mechanical
 - fusion
- either kind has good loss characteristics: between 0.15 to 0.10 dB

Transmission Media: Fiber

- advantages of fiber:
 1) optical signalling
 - does not generate electrical interference
 - not susceptible to electrical interference/noise
 2) signalling keeps energy in medium
 - signal travels greater distance before needs reinforcement
 3) much higher frequency signalling
 - fiber carries more data
 4) doesn’t corrode
 - suitable for use in wider range of environments
 5) lightweight
 - easier to run in buildings and conduits
Transmission Media: Fiber

- disadvantages of fiber:
 1) hard to splice
 - requires special splicing tool/equipment to join ends
 2) flexible, but not as 'bendable' as wire
 - can break fiber inside
 3) hard to locate breaks
 - fiber carries more data
 4) currently use in “spark” mode
 - wastes capacity

Transmission Media: Fiber

- running fiber:
 • what is total optical signal loss over run?
 - cable loss
 - splice loss
 - connector loss
 • what is optical loss budget of receiver?
 - suggest allow ≥ 3dB extra margin
 • is fiber bandwidth adequate for signalling needs?
 - if not, use different wavelength and/or fiber
Terrestrial Microwave

- transmission media: wire, fiber
- what about “ether”

Terrestrial Microwave

- transmission media: wire, fiber
- what about “ether”
- radiate EM signal into ‘space’ in RF spectrum
 - e.g., radio, television
- for data use microwave RF
 - typically: 2 – 40 GHz
 - get good bit rates (10s Mbps)
- can be short distance
- can be long distance
 - e.g., up to 50 km
- sender needs ‘high’ power

http://www.harris.com (Microstar)
Terrestrial Microwave

- use modulated carrier to convey one or more signals
 - QAM
 - FSK
 - QPSK

Terrestrial Microwave

- straight line-of-sight only
- typically: 2 – 40 GHz
 - 150 cm – 0.75 cm
 - wavelengths short enough to be disrupted by everyday objects
- higher infrastructure operating costs
 - e.g., antenna maintenance

© Charles M Snow 16
Terrestrial Microwave

- **advantages of microwave:**
 - no medium to lay down
 - high bit rates, low error rates
 - fairly easy to set up

- **disadvantages of microwave:**
 - more infrastructure at sending, receiving end
 - need clear path for signal
 - set-up must include antennas
 - can be very expensive
 - must be maintained
 - security
 - distance limitation

Terrestrial Microwave

- **straight line-of-sight only**

- **repeater has transponder**
 - receiver and sender together operating at different frequencies

© Charles M Snow 17
Satellite

- Put transponder platform high over earth
 - 35,680 km
 - Over equator
 - Geosynchronous

Satellite

- Each transponder ≥ 3 Mbps
- Operating frequencies:
 - C-band: 4 – 6 GHz (7.5 cm – 5.0 cm)
 - Ku-band: 12 - 14 GHz (2.5 cm – 2.14 cm)
 - Ku-band signals perturbed by heavy rain
- Use powerful ground stations
 - Use high power to reach ‘bird’
Satellite

- e.g., Hughes Galaxy 1R:
- operating frequencies:
 - C-band: 4 – 6 GHz (7.5 cm – 5.0 cm)
 - uplink: 5.925 - 6.425 GHz
 - downlink: 3.700 - 4.200 GHz
 - 24 x 36 MHz - 16 Watt Output
- coverage area: North America, Caribbean
- users include:

<table>
<thead>
<tr>
<th>Cinemax</th>
<th>Comedy Central</th>
<th>Disney</th>
<th>ESPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBO</td>
<td>MSNBC</td>
<td>Starz - Encore</td>
<td>Univision</td>
</tr>
</tbody>
</table>

Satellite

- coverage area Hughes Galaxy XI:

Satellite

- need rocket to launch (position) bird
 - current cost = $6,000/kg
 - ANIK-C (Hughes HS376) 563 kg ≈ $3.4M
- operate from ground-based control stations

Satellite Links

- up-links: ground stations
 - collect data for uplink
 - uplink
 - transmitter
 - antenna: dish, ≤ 10m in diameter
- small uplink facilities
 - your local TV news
 - VSAT (very small aperature terminal) 2m antenna
 - use TDMA or FTDMA to handle multiple users per transponder
Value of VSAT

- VSAT good for areas with sparse population
 - no other high-speed networking infrastructure
 - relatively easy set-up
 - not so high speed as ‘full-sized’ sat systems
- often uses star topology connection model
 - main ground station as hub
 - individual VSAT users as nodes connected to hub via satellite link
 - other topologies possible

Example VSAT Setting

Satellites

- impediments
 - electrical noise
 - RF noise
 - rain
 - space perils:
 - meteoroids
 - solar flares/magnetic storms
 - 1998 Galaxy failure: 45M US pagers failed
 - 1994 ANIK-E1 and E2 failures
 - alignment

Satellites

- advantages:
 - can provide coverage to areas otherwise not feasible to service
 - e.g., northern Canada
 - 'cheap' broadcast mechanism
 - reasonably good performance:
 - e.g., 10^{-9} BER at > 3 Mbps
 - pretty good reliability
 - if space weather is not severe
Satellites

- disadvantages of satellites:
 - expensive to get off the ground
 - actual bird itself
 - launching it into space: it is rocket science
 - finite life span (about 15 years)
 - susceptibility to weather effects
 - in space, affects satellite itself
 - on planet, affects signals
 - specialized equipment needed
 - latency

Very Long ‘Wire’

- can also do intercontinental via undersea cable
- first undersea cable in 1850
- first all-optical cable in 1996
- can go up to 400 km without repeater
 - current repeaters are pure optical
- cable includes power to run repeaters
 - about 40V per repeater
 - 7,500 km cable needs 10,000 V
- built to run 25 years without repair at depths down to 7 km
Undersea Cable: what’s it cost?

- costs of some undersea cables:

<table>
<thead>
<tr>
<th>Cable</th>
<th>BW</th>
<th>Length (km)</th>
<th>Cost: Gbps/Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAT-9</td>
<td>565 Mbps</td>
<td>9,310</td>
<td>$85,548</td>
</tr>
<tr>
<td>TPC-4</td>
<td>560 Mbps</td>
<td>9,860</td>
<td>$67,553</td>
</tr>
<tr>
<td>CiS</td>
<td>622 Mbps</td>
<td>281</td>
<td>$61,598</td>
</tr>
<tr>
<td>TPC-5</td>
<td>5 Gbps (max 20)</td>
<td>25,000</td>
<td>$8,960</td>
</tr>
<tr>
<td>FLAG</td>
<td>10 Gbps</td>
<td>27,000</td>
<td>$5,600</td>
</tr>
<tr>
<td>Columbus III</td>
<td>10 Gbps</td>
<td>11,000</td>
<td>$2,700</td>
</tr>
</tbody>
</table>

data from: http://www-dsg.stanford.edu/holbrook/CableCosts.html

Example: TPC-5CN

- usually do loop instead of point-to-point, like:

![Diagram of undersea cable network](http://www.apricot.net/apricot97/apill/Presentations/SubmarineswCable/sub017.htm)
Undersea Cable

- advantages:
 - low latency
 - high reliability
 - high bit rates
- disadvantages:
 - expensive to lay
 - time consuming to repair
 - hard to find breaks, hard to find cable!

Signals to Bits

- however conducted to receiver, signal must be converted to bits
- conversion samples the signal at regular intervals
 - each sample communicates ≥ 1 bit
 - depends on representation used
Bits and Baud

- suppose we use twisted-pair wire
- we want to send bits from A to B over wire
- only electrical signals, not bits, travel over wire
- use signals to carry bits, i.e., vary properties of signal
 - amplitude (e.g., AM, ASK)
 - frequency (e.g., FM, FSK)
 - phase (e.g., PM, PSK)
 - combinations of these: quadrature (e.g., QAM, QPSK)

use signals to carry bits, e.g., FSK

- we measure (sample) medium at regular intervals: each measurement = 1 baud
- each baud tells us about 1 (or more) bits
Bits and Baud

- **baud rate**: how many samples of transmission medium per second
- **bit rate**: how many bits we see per second
 - if > 1 bit per sample, then bit rate > baud rate
 - generally do multiple bits per baud

A Layered Networking Model

<table>
<thead>
<tr>
<th>Application</th>
<th>Session</th>
<th>Presentation</th>
<th>Transport</th>
<th>Network</th>
<th>DLC</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application</th>
<th>Session</th>
<th>Presentation</th>
<th>Transport</th>
<th>Network</th>
<th>DLC</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network Performance

- how do we measure how “good” network performance is?

 vs.

- we measure speed in **bits per second**

Network Performance

- is speed all we’re interested in?
- **bit error rate (BER):** probability that a particular bit is wrong
 - BER of 10^{-9} implies $P(\text{this bit is wrong}) = 10^{-9}$
 - usually interpreted to mean 1 bit in 10^9 is wrong
- how many errors per second if
 - bit rate is 1000 Mbps
 - BER is 10^{-9}
An Analogy

- current international ship freight has become highly efficient, cost-effective way to move goods large distances over water
 - why?

photo © 2004 World Container Mart, Inc.
A Data Container

- the analogous ‘standard’-sized data container is the packet
 - ‘standard:’ there are lots of different ones
 - has some maximum size
 - may have a minimum size
- generic packet format:

 ![Packet Format Diagram]

Packets

- header typically contains:
 - address information: sender, receiver
 - message identifier
 - special notes or instructions
- almost always fixed-length
Packets

- data payload contains the message data the packet communicates
 - may be another packet for a different target recipient
 - often variable length, not always
 - no restriction on content format
 - other than length

Packets

- trailer typically contains:
 - error checking information
 - usually fixed length
A Layered Networking Model

- Application
- Session
- Presentation
- Transport
- Network
- DLC
- Physical

Encapsulation: one packet-style message becomes the entire message data of another packet-style message.

Internet data: in the beginning
Internet data: in the beginning

Internet and Encapsulation

- Internet Protocol is the “common” protocol that others speak in order to use the Internet
- essential feature: messages sent as packets
- each packet contains all or part of a message
 * possibly expressed in a different (proprietary) protocol
- encapsulation: the data msg is encapsulated within the IP packet
 * like a letter in a FedEx envelope
IP in different flavours

- the “current” protocol used on the Internet is version 4
 - written IPv4
- a newer version is slowly gaining popularity
 - will eventually replace IPv4
 - IPv6
- we look mostly at IPv4

IPv4 Packet

- IPv4 datagram (see RFC791)
IPv4 Header

- What does length really tell you?
- What is minimum value for length?
IPv4 Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERS</td>
<td>Version number, 4 bits, identifies the IP version (IPv4)</td>
</tr>
<tr>
<td>HLEN</td>
<td>Header length, 4 bits, indicates the length of the header in units of 32 bits</td>
</tr>
<tr>
<td>SVC TYP</td>
<td>Service type, 8 bits, identifies the type of service</td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Total length [16]: length of entire packet (header + data) in 8-bit bytes

- What is the maximum value for packet? for data?
- Is there a minimum length?

Joining Many Networks

- Get 2 Kbyte message from A to B:

![Diagram](image-url)
From A to B

- Message must travel across pink network to reach target.
- Message is too large to fit in one transfer unit of pink network.
 - Its MTU is 640 bytes (maximum transfer unit).
- So we break the message into fragments in order to traverse pink network.
- Fragments must be re-assembled into larger message.
- Not all fragments need to be the same size; may not arrive in proper sequence.

From A to B

- Original 2 Kb message
 - Frag 0
 - Frag 1
 - Frag 2
 - Frag 3

Each frag needs to identify itself by number and say where it fits (offset) in overall (reassembled) message.
IPv4 Header

0 31
VERS HLEN SVC TYP LEN

Ident [16]: which fragment number this is

flags [3]: which fragment number this is

© Charles M Snow 38
IPv4 Header

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VERS</td>
<td>HLEN</td>
<td>SVC_TYP</td>
<td>LEN</td>
<td></td>
</tr>
<tr>
<td>IDENT</td>
<td>FLAGS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

frag offset [13]: how far into msg this frag starts (in 8-byte steps)

A to B

as our msg travels...
A to B (almost)

- as our msg travels...

Hops

- a packet moves through network from node to node until reaching destination
- arrival at a node along the route: one hop
- to free packets trapped in routing loops give each packet a counter
 - initialize to maximum number of hops packet should make
 - counter is decremented on each arrival at a node
 - if counter reaches 0, the packet is discarded
 - and error message sent back to originator of pkt
IPv4 Header

<table>
<thead>
<tr>
<th>0</th>
<th>Vers</th>
<th>Hlen</th>
<th>Src IP</th>
<th>Dst IP</th>
<th>LEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ident</td>
<td>Flags</td>
<td>Frag Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

time to live [8]: max time this packet can be in network (hops)

IPv4 Header

<table>
<thead>
<tr>
<th>0</th>
<th>Vers</th>
<th>Hlen</th>
<th>Src IP</th>
<th>Dst IP</th>
<th>LEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ident</td>
<td>Flags</td>
<td>Frag Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

protocol [8]: what protocol to use next layer up (who wants this packet’s data)
Getting It Right

- errors arise in transmission medium
 - and elsewhere
- errors result in bits being wrong at destination
- can destination be assured that what it sees is what was sent?

Getting It Right

- can destination be assured that what it sees is what was sent?
 - mostly, yes:
 - **error detection**: determine if data received contains ≥ 1 error
 - **error correction**: detect an error and its location in message, so can correct it
Simple Error Detection: Parity

- arrange value of ‘spare’ bit in ASCII character so that:

<table>
<thead>
<tr>
<th></th>
<th>odd parity</th>
<th>even parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>total number of 1-bits must be odd</td>
<td>total number of 1-bits must be even</td>
<td></td>
</tr>
</tbody>
</table>

- e.g., for ‘K’: ASCII code is 1001011
 - number of 1 bits is even
 - for even parity, send as: 01001011
 - for odd parity, send as: 11001011

Checksum Error Detection

- sender performs arithmetic operation on data: result is checksum
- receiver performs same arithmetic operation on data received
- compares its result with that in data received
 - if different, received data is in error
- for IPv4 packets:
 - compute 1’s complement 16-bit sum of hdr data
 - taken as 16-bit words
 - compute 1’s complement of that 16-bit sum
IPv4 Header

<table>
<thead>
<tr>
<th>0</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERS</td>
<td>HLEN</td>
</tr>
<tr>
<td>SVC TYP</td>
<td>LEN</td>
</tr>
<tr>
<td>IDENT</td>
<td>FLAGS</td>
</tr>
<tr>
<td>TTL</td>
<td>FRAG OFFSET</td>
</tr>
<tr>
<td>PROTO</td>
<td></td>
</tr>
</tbody>
</table>

hdr checksum [16]: checksum value for entire hdr

Who Computes Checksum?

- what do we do at each hop?
IPv4 Header

source address [32]: IP address of packet’s originator

destination address [32]: IP address of packet’s intended destination

options [var]: IP address of packet’s intended destination

padding: fill to 32-bit size