Pros and Cons for Teaching Courses in the Classroom and Online Simultaneously

J. Mark Pullen
Department of Computer Science and C4I Center
George Mason University
Fairfax, VA, 22030, USA
mpullen@netlab.gmu.edu
http://netlab.gmu.edu
Presentation Outline

- Introduction: what is *simulteaching*?
- Delivery modes: synchronous, asynchronous and hybrid
- Simulteaching pros and cons
- Experience with simulteaching
- Open source software for simulteaching
- Conclusions
Introduction
How Can We Best Help the Student to Learn?

ESTABLISHED PRINCIPLES

• *There is no significant difference in educational outcomes, based purely on mode of delivery*

• *Given technologies available today, the most effective way to present material in order to facilitate student learning is a hybrid or blended approach, combining options for*
 – classroom learning
 – online synchronous delivery
 – online asynchronous learning materials

This paper is written to explain the choices we have made in adopting the hybrid approach and to review their validity.
GMU CS Grades: No Significant Difference

Course Level

Grade Average

400 500 600 700

CLASSROOM
ONLINE
Synchronous and Asynchronous Delivery
Two Schools of Thought

• The majority of Internet-based distance education today is delivered **asynchronously**, via webpages
 – Natural progression from earlier “correspondence courses” and course library compilations
 – Web offers faster delivery, flexible linkage
• However, a growing amount is delivered **synchronously**, as it is being taught
 – Progression from TV and VTC teaching
 – We have found audigraphics, not video, most useful for CS teaching
 – Offers interaction, desktop delivery, high quality graphics, and replay
Which is Best?

• Research shows students learn about as well either way
 – “no significant difference”
• So, “best” would mean a system that
 – Minimizes student time to learn the same amount of material
 – Minimizes faculty time to present
 – Minimizes institutional cost to deliver
Hybridizing DE Technologies

• Ubiquitous Internet offers greater accessibility of education
 – Electronic delivery of course materials
 – Real time delivery of courses
 – GMU Volgenau School of IT&E has been a pioneer

• Combination of synchronous & asynchronous delivery
 – Live streaming of class accessed through Web interface
 – Playback of streaming delivery
 – Course materials accessed via webpages
 – Supporting Learning Management System
 • Accessed by Web
 • With links to Playback for review
Hybridizing Student Locations: *Simulteaching*

- Regional online course delivery
 - Avoids long travel time to attend class
- Students may attend in-person or online
 - or time-delayed via recording
- Classroom and online students have equal access to class and opportunity for interaction
- Low-cost approach
 - No new webpages to create; use existing slides
 - Teaching two groups at same time lowers costs
 - Video possible but benefit marginal
 - Major cost is Internet connection
 - Could provide if network is available
Pro Simulteaching
Simulteaching Pros 1

- Low barriers to participation
 - Easy extension of regular classroom
 - Use existing teaching materials
 - Online office hours made easy
- Good interaction with students
 - Good quality Internet synchronous teaching software enables spoken and typed interaction with students
 - As in the classroom, lack of interaction is a pedagogical problem, not a delivery problem
- Reduced faculty preparation/support time
 - Reduces requirement to spend large amounts of time preparing asynchronous materials
 - Most communication with students takes place in class and is heard by all – reduces need for email
Simulteaching Pros 2

• Faculty salary savings
 – Primarily for advanced courses with lower enrollment
 – Classroom and online groups combined require only a single presentation

• Enables more distance education courses
 – Students want full online degree program
 – Hard to justify small online sections in graduate courses
 – Much easier when combined with classroom

• Low support cost
 – Doing simulteaching well requires student monitor online
 – But the monitors are much less expensive than faculty
 – And can be shared among multiple simultaneous courses
Simulteaching Pros 3

• Enables flexible distance education delivery
 – Individual sections using recordings, mentored by presenter
 – Expands range of courses available in summer
 – Recordings also can support inverted or “flipped” classroom

• Enables expansion of local programs
 – Many programs do not seek global scope (ours included)
 – Local/regional simulteaching can serve time-challenged students while keeping benefits of nearby physical campus
Con Simulteaching
Simulteaching Cons

• Classroom equipment requirements
 – Need good, uninterrupted Internet service in teaching room
 – And some form of tablet (SmartBoard style favored by many)

• Administrative complexity
 – Somebody must keep track of linked groups
 – Schedule facilities (classroom and Internet)
 – Account for difference in tuition/fees (if any)

• Faculty technophobia
 – Faculty need to be confident of teaching tool so they can focus on effective presentation
 – Need simple and robust supporting software

• Technology problems can disrupt class
 – Need on-call help and software that deals with problems
Simulteaching Experience
CS Distance Education at GMU

• Northern Virginia (in Washington DC metro area) is known for extreme traffic congestion
 – Commuting to class can require as much time as the class itself!

• Many of our graduate students are employed in government or industry – must travel for work
 – Can connect to evening classes via Internet from hotel
 – Or keep up with class on weekly basis using recordings of classes

• Pullen was early adopter of online teaching
 – By 2004, convinced colleagues to offer MSCS online

• Approach has proved successful
 – Popular with students
 – Faculty find it easy and like providing expanded student access
 – Administration likes enrollment increase but would prefer to avoid support burden
Online Courses in GMU MSCS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 540</td>
<td>Language Processors</td>
</tr>
<tr>
<td>CS 555</td>
<td>Computer Communications and Networking</td>
</tr>
<tr>
<td>CS 571</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>CS 580</td>
<td>Introduction to Artificial Intelligence</td>
</tr>
<tr>
<td>CS 583</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>SWE 619</td>
<td>Object-Oriented Software Specification and Construction</td>
</tr>
<tr>
<td>SWE 620</td>
<td>Software Requirements Analysis and Specification</td>
</tr>
<tr>
<td>SWE 621</td>
<td>Software Modeling and Architectural Design</td>
</tr>
<tr>
<td>CS 640</td>
<td>Advanced Compilers</td>
</tr>
<tr>
<td>CS 652</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>ISA 656</td>
<td>Network Security</td>
</tr>
<tr>
<td>CS 658</td>
<td>Networked Virtual Environments</td>
</tr>
<tr>
<td>CS 672</td>
<td>Computer System Performance Evaluation</td>
</tr>
<tr>
<td>CS 706</td>
<td>Concurrent Software Systems</td>
</tr>
<tr>
<td>CS 755</td>
<td>Advanced Computer Networks</td>
</tr>
<tr>
<td>CS 756</td>
<td>Performance Analysis of Computer Networks</td>
</tr>
</tbody>
</table>
Moodle Integrated Synchronous Teaching/Conferencing (MIST/C)

Open Source Software for Simulteaching
Simulteaching System

Student Home/Office Locations

- Student Multimedia Computer

Server Facility

- Live Class Server
- Playback Server
- Webserver & Database

Classroom

- Video Camera
- Workstation Display/Tablet/SmartBoard
- Classroom Projector
- Instructor Multimedia Computer
- Wireless Microphone
- Keyboard & Mouse/Tablet Pen
- Recording of Class
- Prepared Slides

Student Multimedia Computer

Internet

© 2012 J. Mark Pullen
Pullen ITiCSE 2012
Purpose of MIST/C

• Provide a quality, easy to use, open-source tool for teaching and conferencing over the Internet, supporting student and instructor with:
 – Audio, graphics (slides and annotations), video, and text chat
 – Floor control, breakout rooms, and voting
 – Real-time interaction and recording of sessions
 – Simulteaching classroom and online students
Commercial Alternatives

• When we starting developing online teaching software the only commercial systems were very expensive and not Internet-capable

• Imitation is the sincerest form of flattery!
 – Commercial systems now available but not free:
 • Blackboard Collaborate (formerly Elluminate)
 • Adobe Connect (oriented toward conferencing)
 • Echo 360 “classroom capture” (video oriented)

• More expensive than MIST/C

• They are not designed for simulteaching
 – And user interfaces while elegant are more complex
Features of MIST/C

• Multiplatform (Windows, Linux, Macintosh)
 – Clients for download at http://netlab.gmu.edu
 – With presenter guide and extensive documentation
• Multimedia (Audio, Whiteboard, Video, Text)
• Integrated, adaptive control window
• Communicates via TCP for best access
 – Through Network Address Translators and Firewalls
 – Low data rate: dialup connection (without video)
• Server and client run on low-cost computers
• Free and open source (posted to SourceForge)
MIST/C Client Interface

MIST/C
Moodle Integrated Synchronous Teaching and Conferencing
Synchronous Internet Distributed Education

J. Mark Pullen
Department of Computer Science and C4I Center
George Mason University
Fairfax, VA 22032
mpullen@gmu.edu

© 2010 GMU NETLAB
MIST/C and Moodle

• Moodle provides access control and file management for MIST/C
 – MIST/C has access to Moodle database
• Instructor saves slide files and recordings in Moodle for student access
• This allows all course materials to be available through Moodle
 – Or MIST/C in Blackboard or Sakai via link to Moodle
• Easy-install package contains full server in VM
 – Moodle, MIST/C, Apache Webserver, MySQL, Linux
 – Instructors configure 24x7 MIST/C rooms
MIST/C Features supporting Simulteaching
(based on user suggestions)

- Auto-reconnect
 - Instructor can continue with classroom session in event of network outage; MIST/C reconnects to server if possible
 - Online student can recover using recordings
- Server-side backup recording
 - Classroom recording is better but instructor may forget to start
- Simple, intuitive interface
 - Includes bell + visual alert when online users need attention
- Whiteboard supports range of open media and imports desktop window contents
- Voting and breakout rooms improve online interaction
- Second full-screen whiteboard for projector
 - No other system we know of has this!
MIST/C Usage in GMU MSCS

CS Dept Enrollment in Simulteaching Sections

- **Online**
- **Classroom**

<table>
<thead>
<tr>
<th>Semester</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10</td>
<td>100</td>
</tr>
<tr>
<td>S11</td>
<td>200</td>
</tr>
<tr>
<td>F11</td>
<td>100</td>
</tr>
<tr>
<td>S12</td>
<td>250</td>
</tr>
</tbody>
</table>
Conclusions/Future Directions

• Simulteaching with synchronous plus asynchronous delivery minimizes costs and additional faculty time
 – Pros far outweigh cons in our situation
• MIST/C supports it in free, easy-to-use software that is integrated with Moodle
 – Online delivery increases access for students
 – Best combined with Moodle asynchronous
• GMU has used simulteaching to extend its MSCS online to reach more regional students
• Results are highly promising
 – Enrollment, grades, student evaluations all good
 – We intend to continue expanding MIST/C capabilities
Backup Slides
GMU C4I Center
Networking and Simulation Laboratory

MIST/C

For more details, see:
http://netlab.gmu.edu/MISTC
Using MIST/C with Tablet PC
Using MIST/C with SmartBoard

NEW
Network EducationWare
Synchronous Internet Distributed Education

J. Mark Pullen
Department of Computer Science and CSI
George Mason University
Fairfax, VA 22032
mpullen@gmu.edu

© 2008 J. Mark Pullen