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Abstract—High-Level Information Fusion (HLIF) provides the
ability to combine data from diverse sources, including doc-
uments involving analyst assessment and raw sensor reports
generated by sensors, in a coherent and consistent way. Command
and Control (C2) in cyber infrastructure involves gathering
information from experts, merging it with field knowledge and
experimental results, and selected the most appropriate cyber
assets to deploy at any given time in the mission cycle. When
framing cyber asset selection as a HLIF problem, one key
aspect involves estimation of network-wide impacts generated by
cyber assets. Cyberspace is a highly dynamic man-made domain
with a high degree of uncertainty and incomplete data which
must be transformed into knowledge to support precise and
predictable cyber effects estimation. Current systems have to
rely on human subject matter experts (SMEs) for most tasks,
rendering the cyber asset planning process too time consuming
and therefore operationally ineffective. This paper proposes an
architecture that leverages probabilistic ontologies to expedite
the cyber asset planning process, allowing for the automation
of most time-consuming, error-prone, SME-based knowledge
elicitation under uncertainty. We illustrate the main aspects of the
proposed architecture through examples taken from the Derived
and Integrated Cyber Assets (DICE) project.
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I. INTRODUCTION

The cyber domain is inherently adversarial, as it always
includes the presumption of rogue agents aiming to disrupt,
deny, degrade, or deceive current missions. From a cyber
defense perspective, these rogue agents are controlled by
adversaries who are constantly attempting to access the de-
fender’s network for their advantage. The plethora of attack
vectors available today, using techniques that cover a large
spectrum in terms of complexity, size, capabilities, and other
factors makes cyber defense a daunting task; one that is
aggravated by the lack of information about the enemy, its
capabilities, intentions, and modus operandi. Further, enhanc-
ing the effectiveness of cyber defenses requires understanding
how they interact together in face of different attacks. From
a full-spectrum cyber mission perspective, a similar problem
exists of selecting the most appropriate asset to achieve
the current mission objective and configuring the asset in a

certain way that maximizes a utility function across multiple
attributes, including the accuracy in achieving the intended
affect (e.g., deny), the precision at which the affect is obtained
(e.g., only intended hosts are denied), the latency associated
with generating the intended effect, and the ability to remain
undetected and non-attributable.

In an adversarial environment, fulfilling these knowledge
needs involves estimating what is not known based on what
is known. A common way of doing this involves capturing
and modeling expert knowledge and using that model in
conjunction with observations to estimate the most likely cause
of what was observed. Another is to conduct experiments on
a controlled environment in a way that generates results that
can be extrapolated to more general but similar conditions.

In spite of the techniques used in either of these two
approaches, data entering the system will be highly hetero-
geneous in nature and fraught with uncertainty. As a result,
merging such data consistently and computing its aggregated
results in a coherent way is a typical high-level information
fusion problem. More specifically, in the information fusion
community a distinction is commonly made between low-level
and high-level fusion. Low-level Information Fusion (LLIF)
combines sensor reports to identify, classify, or track individual
objects. High-level Information Fusion (HLIF) extends it by
also combining information from ”soft sources” (e.g. SME
reports, social media, etc.), as well as contextual information,
to characterize a complex situation, draw inferences about
the intentions of actors, and support process refinement (cf.
[1], [2]). However, while LLIF has Probability Theory as
the technology behind how uncertainty is handled, the same
cannot be said about HLIF. For instance, ontologies have been
widely considered as a means to enable automated systems
to perform HLIF tasks (e.g., [3], [4], [5]), but they have no
standardized support for managing uncertainty. Representing
uncertainty with ontologies is an active area of research,
especially in the area of the Semantic Web (e.g., [6], [7]).
Proposed approaches include Bayesian probability (e.g., [8],
[9], [10]), extensions to Description Logics (e.g.,[11], [12]),
and programming logic alternatives (e.g., [13]).

In this paper, we propose an approach to the high-
level information fusion of cyber-security data obtained from
both subject-matter expert (SME) knowledge elicitation and



specifically-designed experiments. We illustrate our ideas in
the context of work performed on the Derived and Integrated
Cyber Effects (DICE) project. After this introduction, Section
2 provides a brief overview of the related work and Section
3 discusses challenges associated with eliciting cyber knowl-
edge. Then, Section 4 illustrates how cyber-security knowledge
can be elicited from both SME and controlled experiments.
Section 5 presents the HLIF process under uncertainty that
is the core subject of this paper, followed by our concluding
remarks.

II. RELATED WORK

The described approach relates to a number of existing
approaches for cyber experimentation and modeling.

The Cyber Quantification Framework (CQF) [14] provides
a means for structured cyber experimentation and computation
of derived attributes for cyber assets similar to the ones
described in this paper. However, a number of differences exist
between our work and the CQF. First, the CQF focuses on
determining the local impact of cyber assets on target host.
DICE, in contrast, aims to quantify the network-wide impact.
Second, in contrast to DICE’s semantic definitions, the CQF
contains a syntactic definition of derived attributes. Finally,
the CQF does not track uncertainty measures associated with
knowledge, while DICE uses a bayesian approach to do so by
encoding and managing conditional probability distributions.

The Attack Surface Reasoning (ASR) [15], [16] provides
semantically defined metrics for quantifying the attack surface
and mission-critical distributed systems. Both ASR and DICE
leverage abstract ontologies for the purposes of cyber quantifi-
cation. While ASR defines models of defenses and quantifies
the impact of different defense configurations, DICE focuses
on modeling of cyber assets and determining the network-wide
impact of various asset configurations.

The Datasculptor framework provides tool support for per-
forming Visual Analytics on Linked Data [17]. Datasculptor
enables analysts to lifting and interconnect data from a variety
of domains in a manner that explicitly describes the overall
data transformation process through a sequence of functions,
each defining its inputs through a SPARQL1 SELECT query
and its output through a SPARQL CONSTRUCT query. Def-
inition and provenance of semantic data transformation can
therefore be described through semantic overlaps between
a chain of function executions. In DICE, we implemented
several Datasculptor functions to build up the layered abstrac-
tions of the Cyber Impact Ontology and generate bayesian
representations of derived attributes.

III. KEY CHALLENGES FOR ELICITING CYBER-SECURITY
KNOWLEDGE

The overall objective of DICE is to quantify how well
cyber assets will perform when being deployed in a target
environment containing a number of cyber defenses that are
under external control. How well a cyber asset performs can be

1https://www.w3.org/TR/rdf-sparql-query/

Fig. 1. Example Derived Attributes

described through a collection of derived attributes that align
with cyber mission objectives.

Figure 1 shows the current set of derived attributes we have
started to formalize. First and foremost, the asset needs to
achieve its desired effect, a derived attribute we call ”Success”.
”Success” changes per asset type and mission phase. For
an asset used during the reconnaissance phase of a cyber
mission, this might mean that the asset needs to generate
an accurate and precise picture of the target environment.
An asset used during a later exploitation phase might be
characterized by its ability to deny service to a specific target
component for an extended period of time. Next, timeliness
of asset impact can be expressed as ”Speed”, enabling the
reasoning to pick the most appropriate asset given current
mission timelines. Deployment of a cyber asset generates
signals that are generally of value to adversaries. To quantify
the impact of these signals, we introduce two more related
by different derived attributes - detectability and attribution.
While ”Detectability” expresses the likelihood that a cyber
asset is detected, either in real-time during execution or
forensically after execution, ”Attribution” captures the degree
to which the asset can be linked to its originator after being
detected, either based on the uniqueness of the asset itself or its
specific invocation (including originating location). The final
two attributes address the potential for unintended interaction
effects caused by executing the cyber asset in the target
environment (”Collateral Damage”) and the ability of assets
to adapt to changing operating conditions (”Adaptability”).

Calculating these attributes in support of cyber C2 must
address the following technical challenges associated with
cyber asset affect estimation and experimentation.

A. Aggregate Effects Estimates

Using existing experimentation techniques, it is easy to
end up with a database full of low-level observables without
a clear understanding of how these observables relate to
aggregate measures at the level of abstraction of interest
to cyber planners, e.g., the probability of mission success,



covertness, and non-attribution of operations. In recent years,
cyber ranges have started to become more readily available
across the DoD. Current capabilities used at cyber ranges
such as the CQF provide means for producing experimentation
topologies including definitions of Virtual Machine (VM)
images, sensors, together with means for capturing configu-
ration data from sensors. Current metrics focus on end-to-
end probability of success across specific experiments together
with performance, mostly expressed as latency measured via a
time-to-succeed. Finer-grained metrics for capturing relevant
attributes of cyber assets have started to emerge, but are limited
to closed formulas that only apply to single hosts. To properly
quantify cyber assets, a modeling platform is required that
can (1) express important high-level attributes of cyber assets
related to both security and cost dimensions in a manner that is
understandable by cyber operators, (2) express a large number
of low-level observables that can be readily gathered from
existing experimentation platforms, and (3) encode logic for
computing the high-level attributes from the low-level data
in a manner that considers aggregate cross-node impact yet
remains to be explainable, reusable, and maintainable.

B. Uncertainty Representation and Analysis

Full-spectrum mission execution needs to cope with highly
dynamic environments, including rapidly changing networks,
unreliable asset effects, and highly non-linear adversarial activ-
ities. Uncertainty permeates US military, commercial, and ad-
versarial environments used in full-spectrum cyber operations.
Uncertainty exists in all information related to cyber asset
quantification, including capabilities of the assets themselves
as well as configuration information about nodes, networks,
and defenses. A successful cyber quantification solution must
track uncertainty all the way through the entire set of envi-
ronments and associated networks. In particular, while it is
relatively straight-forward to set up well-defined experiments
and evaluate assets, it is guaranteed that the environment
encountered in real-world cyber mission execution will be
different from what has been set up in virtual environments at
home. To be useful and pragmatic, solutions need to cover the
case in which cyber operators do not have access to the defense
software set up by adversaries. Furthermore, cyber operators
may only have a limited understanding of the types of defenses
and their configurations. These aspects not only contribute
to uncertainty but also significantly limit the usefulness of
approaches that solely rely on experimentation, such as the
CQF.

IV. ELICITING CYBER-SECURITY KNOWLEDGE

To systematically compute aggregate effects of cyber assets,
we propose to represent knowledge about assets, defenses,
and target environments in the form of probabilistic models
expressed via a collection of cyber ontologies. This allows
disparate sources of information to be automatically integrated
into a rich graph of interconnected information that is easy to
understand and easy to extend.

Fig. 2. The Semantic Processing Pipeline

For the purposes of representing knowledge that enables
probabilistic quantification of aggregate effects of cyber assets,
we have developed a layered approach, as shown in Figure 2,
consisting of (1) an ontology for representing detailed cyber
observables (a system model) and (2) an ontology that uses
specific abstractions that more readily support analysis of
interactions between assets and defenses (a cyber impact
model), and (3) a collection of Multi-Entity Bayesian Net-
works (MEBNs) for computing derived attributes.

Figure 3 shows the current implementation prototype that
supports quantification of Success, Speed, and Detectability
through a collection of implementation classes that parse
raw data into triples (Lifters), build up abstractions of the
cyber impact ontology (Plugins), and capture the resulting
knowledge in the form of Bayesian Networks (Knowledge
Fragment).

Fig. 3. A current version of the Semantic Processing Pipeline for character-
izing the NMap cyber asset

We differentiate between two main types of reasoning in



the cyber impact ontology, effects reasoning and configuration
reasoning.

Effects reasoning uses direct observations derived from
executing a cyber asset with a specific configuration in a
specific target environment. Using experimental data, we can
for instance determine how many IP addresses where found
by an nmap invocation, how many ports were found, and
whether the nmap cyber asset was able to accurately determine
the type of operating systems across the target nodes in the
experiment topology. We can use this information to calculate
the ”Success” of an nmap invocation as a measure of accuracy.

Configuration reasoning, in contrast, focuses on analyzing
the configurations of various components in the target environ-
ment and making predictions based on comparing component
configuration with the configuration of the cyber asset. For
instance, to predict how likely the nmap cyber asset will
be detected, we can analyze the configuration of intrusion
detection systems for monitoring range and age of policy,
both of which will impact the sensors ability to detect cyber
assets. We expect that configuration information plays a central
role in cyber C2, as cyber missions are generally focused on
obtaining a detailed situational awareness picture of the target
environment in early phases of the mission. The power of
configuration reasoning is to enable cyber C2 planner to make
immediate use of such information to plan asset deployments,
without the need to go through a full experimentation cycle.

A. Modeling SME Knowledge

The representational framework used in DICE, as explained
above, has the following key requirements:

1) Represent intricate patterns of uncertainty,
2) Capture knowledge from both SMEs and experiments,
3) An underlying rigorous mathematical foundation, and
4) Efficient and scalable support for probabilistic and log-

ical reasoning.

Bayesian Networks [18] are a very popular way for fus-
ing information under uncertainty, but their expressiveness is
limited to propositional logic and thus Bayesian Networks
cannot capture the complexity involved in DICE operations.
As a result, DICE uses probabilistic ontologies [8], [9]. More
specifically, PR-OWL, a probabilistic extension to the web
ontology language OWL is used. The mathematical foundation
of PR-OWL is Multi-Entity Bayesian Networks (MEBN),
which can be seen as a first-order logic version of Bayesian
Networks [19].

MEBNs encode probabilistic knowledge as MEBN Frag-
ments (MFrags), which can be seen as templates to build
BNs for a given scenario. In general, an MFrag captures a
repeatable pattern (e.g. the effect of a specific cyber asset to a
network node) and can be instantiated many times as needed to
match a specific situation (e.g. that specific cyber asset being
employed to a 10-node network). An MFrag is a parametrized
fragment of a directed graphical probability model. It repre-
sents probabilistic relationships among uncertain attributes of
and relationships among domain entities. A set of MFrags

that collectively satisfies constraints ensuring a unique joint
probability distribution is a MEBN Theory (MTheory).

MFrags are templates that can be instantiated to form a
joint probability distribution involving many random variables.
Such a ground network is called a situation-specific Bayesian
network (SSBN). MEBNs provide a compact way to represent
repeated structures in a Bayesian Network. There is no fixed
limit on the number of random variable instances, which
can be dynamically generated as needed. The ability to form
a consistent composition of parametrized model fragments
makes MEBN well suited for knowledge fusion applications
[20]. MEBN inference can be performed by instantiating
relevant MFrags and assembling them into SSBNs to reason
about a given situation. As evidence arrives, it is fused into the
SSBN to provide updated hypotheses with associated levels of
confidence. These are very convenient features for representing
diverse information coming from various sources, which make
MEBN attractive as a logical basis for probabilistic ontologies.

V. HLIF WITH PROBABILISTIC ONTOLOGIES

Ontologies have been used extensively in HLIF applications
(e.g. [3], [4], [5]). However, current ontology formalisms
deliver a partial answer to requirements listed above, but lack
a principled, standardized means to represent uncertainty. This
has spurred the development of palliative solutions in which
probabilities are simply inserted in an ontology as annotations
(e.g. marked-up text describing some details related to a
specific object or property). These solutions address only part
of the information that needs to be represented, and too much
is lost due to the lack of a good representational scheme
that captures structural constraints and dependencies among
probabilities. A true probabilistic ontology must be capable of
properly representing those nuances. More formally:

Definition 1 (from [8]): A probabilistic ontology
(PO) is an explicit, formal knowledge representation
that expresses knowledge about a domain of appli-
cation. This includes:

• Types of entities that exist in the domain;
• Properties of those entities;
• Relationships among entities;
• Processes and events that happen with those

entities;
• Statistical regularities that characterize the do-

main;
• Inconclusive, ambiguous, incomplete, unreli-

able, and dissonant knowledge related to entities
of the domain; and

• Uncertainty about all the above forms of knowl-
edge;

where the term entity refers to any concept (real or
fictitious, concrete or abstract) that can be described
and reasoned about within the domain of applica-
tion. �

POs provide a principled, structured, sharable formalism
for describing knowledge about a domain and the associated



Fig. 4. The Success MFrag

uncertainty and could serve as a formal basis for representing
and propagating fusion results in a reasoning system such as
DICE. They expand the possibilities of standard ontologies
by introducing the requirement of a proper representation of
the statistical regularities and the uncertain evidence about
entities in a domain of application. PR-OWL provides a means
to express MEBN theories in OWL. The technique has been
applied to provide HLIF in other domains, such as maritime
domain awareness, which also had the requirement of captur-
ing information from SMEs and other types of sources [21],
[22]. PR-OWL ontologies can be developed using the graph-
ical probabilistic knowledge package UnBBayes2, an open
source, JavaTM-based application developed at the University
of Brasilia (UnB). It includes a MEBN/PR-OWL plugin
developed by UnB with participation from George Mason
University, in Fairfax, VA. The plugin provides both a GUI
for building probabilistic ontologies and a reasoner based on
the MEBN/PR-OWL framework [23], [24]. Reasoning in the
UnBBayes MEBN/PR-OWL plugin involves SSBN construc-
tion, which can be seen type of propositionalization, and the
subsequent inferential process over the resulting SSBN.

Figure 4 depicts a simplified version of theSuccess MFrag,
which is part of the DICE MFrag Library. This MFrag captures
some of the concepts and relationships that are useful to
infer the level of success a specific cyber event (e.g. an asset
execution event) would have based on the specific conditions
of that event (not shown in the picture). The three different
types of MFrag nodes can be seen: Context, Input, and
Resident nodes.

Resident nodes are the random variables that form the core

2http://unbbayes.sourceforge.net

subject of an MFrag. The MFrag defines a local distribution
for each resident node as a function of the combination of
the states of its parents in the fragment graph. Resident nodes
can be discrete or continuous. There is one discrete resident
node in the Success MFrag, which is depicted as yellow
rounded rectangles in the picture. Continuous resident nodes,
which do not appear in the Success MFrag, are depicted as
rounded rectangles with double lines. The distributions of
both continuous and discrete resident nodes are defined in the
MFrag they are resident to. In this case, the discrete resident
node Success(e) is a boolean random variable that conveys the
probability of success for event e.

Input nodes, depicted as gray trapezoids in the figure, serve
as “pointers” referring to resident nodes in other MFrags.
Input nodes influence the local distributions of resident, but
their own distributions are defined in the MFrags in which
they are resident. For instance, input node IPsCaptured(ip,
e) is a resident node in the IPresults MFrag, which conveys
the distribution of IPs captured in event e, as well as its
relationship with other nodes in that MFrag.

Context nodes are Boolean (i.e., true/false) random variables
representing conditions that must be satisfied for the probabil-
ity distribution of the resident node in an MFrag to apply. The
same way it happens with input nodes, context nodes have
distributions defined in their respective resident MFrags.

As an example of how the representation works, suppose
that for an attack event α all criteria are important. Figure 5
depicts the resulting SSBN for a query in which the input
information defines such requirements. In this case, all the
resident nodes to which the input nodes of the Success
MFrag were pointing are now instantiated from their respective



resident MFrag and built into the SSBN.

Fig. 5. The Success SSBN for event α with six criteria

Now, supposing that another event, β, only 3 criteria are of
importance. In this case, the same MFrag would generate the
SSBN in Figure 6. That is, the data entered in the probabilistic
reasoner would result in a Bayesian network taylored for the
conditions of each specific event (a.k.a., an SSBN).

Fig. 6. The Success SSBN for event β with three criteria

By allowing uncertainty on context nodes, MEBNs can
represent several types of sophisticated uncertainty patterns,
such as relational uncertainty or existence uncertainty. This
proves to be very convenient in HLIF within complex domains
such as estimation of impact of cyber assets, where it is
not always possible to know whether a given result refers to
each specific node in the network. In order to leverage the
representational power of MEBN/PR-OWL, DICE employs
a carefully crafted architecture that integrates SME-provided
knowledge with results from experiments.

A. Description of the HLIF architecture

Figure 7 depicts a diagram with the proposed architecture
for HLIF. For clarity and simplicity, the diagram only shows
the components directly related to the HLIF workflow. In the
diagram, the first step is to define a knowledge need, which
is conveyed as a self-contained set of SPARQL queries. The
queries included must be in a specific format, since they have
to be parsed by both the logical and probabilistic reasoners in
the workflow. For instance, the system must determine whether

new experiments are needed to satisfy the query set or whether
experimental data already exists. In case new experiments are
required, then they will be conducted and their results stored
in the Experiment Results Library, which is the second step
in the diagram.

Once the Experiment Results Library has all the exper-
iments required to respond the query set, then the SSBN
controller module will start the SSBN construction process,
the third step in the diagram.

The SSBN construction algorithm implemented in
UnBBayes involves an iterative process in which metadata
from the experiments will be input to the probabilistic
reasoner, and then used to define which MFrags should be
instantiated. For example, supposing that the metadata of one
experiment input to the reasoner includes information that
the experimental network size was between 10-50 computers,
then only the MFrags which have context nodes matching that
size criteria would be instantiated. The difference between
the bi-directional arrows linking the SSBN Controller module
accounts for the distinct interaction between the module and
the libraries. More specifically, based on the SPARQL query
set it receives, the reasoner will request the experiments’
metadata included in the queries and use it to define which
MFrags must be instantiated and how many times they must
be instantiated. Thus, while metadata from experiments are
asked for and received once, MFrags will be visited by the
reasoner and instantiated many times.

The end result of this process is the SSBN shown in step
5 of the diagram, which contains the prior knowledge for
that specific configuration. That is, the probability information
stored in the resident nodes of the MFrags being instantiated
will dictate the CPTs of the resulting SSBN. Note that the
structure of the SSBN was defined by the query set received
and by the metadata of the experiments selected. The first
conveys what needs to be learned, while the second defines
what should be the structure of the SSBN to provide the
answer. The resulting SSBN brings the ”current answer” of
the system based on the prior information it had, which was
not necessarily obtained by a set of experiments hand-crafted
for that specific query set.

The above distinction illustrates the possibility that the
situation involved in a given query set was never specifically
tried in experiments, so the system would instantiate MFrags
that were learned in situations that were similar enough. In
other words, the SSBN reflects the best knowledge available
at the time.

When new experiments are performed, then the Bayesian
parameter learning module is invoked and receives both the
current SSBN and the results of the new experiments. It
then computes the posterior probabilities through parameter
learning. The current DICE system has different versions
of both regular and incremental parameter learning, and the
choice of which is based on system design details that are
outside the scope of this paper.

The result of the parameter learning process, step 7 in the
diagram, is a SSBN with the same structure of the input SSBN
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Fig. 7. The HLIF architecture fuses knowledge elicited from experiments and SMEs

but with a new joint probability distribution reflecting the
learned data.

Step 8 illustrates the feedback mechanism, in which the
original query set is answered and, in case new experiments
were included, the MFrags that were originally instantiated are
updated to reflect the new information acquired.

This architecture allows for the modeling of both
experiment-based and SME generated knowledge, while im-
plementing a consistent way of merging disparate knowledge
on evaluation of cyber assets. It also leverages Bayesian learn-
ing to enhance existing knowledge based on the experimental
results, as well as data collected from other sources.

VI. CONCLUSIONS

This paper describes an approach together with prototype
results for fusing multiple cyber observables to compute
probabilistic attributes of cyber assets, including probability of
success, detection, attribution, collateral damage, and speed.
The approach achieves data fusion and alignment through a
semantic I/O pipeline that achieves semantic provenance from
end-results to initial data items through backwards chaining
across the collection of SPARQL I/O pairs. Knowledge is built
as a collection of modular knowledge fragments (MFrags)
that can be dynamically instantiated to predict cyber asset
effects on never-before-seen target environments. Finally, the
incremental nature of knowledge acquisition integrates exper-
imentation with knowledge extraction, flagging the need for
more experiments to be executed to reduce uncertainty, and
using the results from new experiments to update the set of
knowledge fragments. Going forward, we intend to expand
the set of derived attributes and cyber assets that are covered,

and provide enhanced implementation support for incremental
learning. In addition, we propose to further reduce the need
for manual knowledge engineering by completely automating
the MFrag assembly process and implement structure learning
for MFrags.
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