Adding Reports to Coalition Battle Management Language for NATO MSG-048

Dr. Mark Pullen, Douglas Corner, Samuel Singapogu and Nicholas Clark, GMU C4I Center, USA
Nicolas Cordonnier and Mohammad Mennane, Thales Communications, France
Lionel Khimeche, Délégation Générale pour l'Armement, France
Dr. Ulrich Schade and Dr. Miloslaw Frey, FGAN-FKIE, Germany
Nico de Reus, Paul de Krom and Nanne LeGrand, TNO, The Netherlands
Ole Martin Mevassvik and Anders Alstad, FFI, Norway
Adam Brook, QinetiQ, UK
09E-SIW-003
Presentation Overview

• C2 – Simulation Interoperability
• Background: BML and MSG-048
• Demonstration Overview
• National Contributions
 • Germany
 • France
 • Netherlands
 • Norway
 • UK
 • USA
• Experimentation Plans
• Conclusions
C2 – Simulation Interoperability

• Command and control – simulation is a long-time goal
 • Enable simulation in C2 for operations
 • Enable simulation in C2 for mission rehearsal
 • More realistic training using operational C2 system
 • Reduce cost of training by reducing support staff
• Individual systems have been interconnected but no standard way to interoperate exists
 • Battle Management Language (BML) aims to provide the capability
• A sequence of US projects has moved toward a standardized BML
 • Army BML – XBML – AOBML – JBML - geoBML
 • NATO MSG-048 has provided strong coalition input
BML and NATO MSG-048
BML Overview

• BML - an unambiguous language to:
 • Command and control live and simulated forces conducting military operations, and
 • Provide for situational awareness and a shared, common operational picture.
• BML orders based on “Who, What, When, Where and Why.”
• Orders are transferred among C2 and simulation systems through a database built on the JC3IEDM standard.

Shared Semantics between C2 and M&S via a Common Tasking Description
BML and NATO MSG-048

• NATO Modeling and Simulation Group (NMSG) is part of the NATO Research & Technology Organisation

• MSG-048 is a Technical Activity under NMSG

• Charter:
 • The requirement for improved M&S-C2 interoperability is well recognized by NATO bodies for defense planning, training, exercises and support to operations
 • A NATO effort is necessary to define and standardize M&S-C2 interoperability
 • The Coalition BML Technical Activity is based upon voluntary contributions from Nations and provides insights regarding the usefulness of M&S-C2 interoperability and capability it can offer to coalition forces
MSG-048 Objectives

• Provide support to the development of a NATO representation of digitized command and control information that is understood by military personnel, simulated and in future, robotic forces.

• Enable improved shared awareness and common operational picture through structured plans, reports and returns.

• Provide support to SISO in standardizing and improving M&S-C2 interoperability for automatic, rapid and unambiguous command and control of one by the other.
MSG-048 I/ITSEC-2008 Demonstration

• **Demonstrate 2-way C2-Sim interoperability**
 • 8 systems/components (from 6 different Nations)
 • Work in concert enabled by C-BML

• **Highlight improvements since last year**
 • automated generation of situation reports (spot and ground truth) from simulations using C-BML
 • display those reports in C2 systems to enable the commander to reflect on new orders or FRAGO as required
 • reduction of “man-in-the-loop”; the C2 interface being able to translate orders according to the C-BML grammar
 • introduction of air operations showing multiple domain coalition BML capabilities
Demonstration Overview
Demonstration Terrain
Demonstration Scenario

• “Operation Perseus”
 • Caspian Sea region
 • 2025 timeframe
• Fictional countries Donovia, Minaria, Gorgas and Atropia
 • Successor states to a collapsed empire
 • Long history of fighting, factionalism, unrest
• Area is a source of oil and gas resources
 • International interest lies in stability
 • Ariana government supported by Donovian rebels threatens oil-rich region of Atropia
 • Rebels expected to try to occupy airport and harass traffic between river and airport
• Commander Joint Forces Land Component responsible for security
 • Selects task forces from USA, Netherlands and Norway
 • Simulation of their plans is needed for COA analysis
Demonstration Task Organization

43 MNB

1 (USA) TF
- A/1-66 AR
- B/1-66 AR
- B/1-12 Mech
- C/1-22 Mech

2 (NOR) TF
- 1 MBT SQN
- 3 Mech Coy
- 4 Mech Coy

2 (NLD) TF
- A Team Mech
- B Team Mech
- C Team AR
Demonstration Opposing Military Forces
National Contributions
German Contribution: C2LG and GUI

• Command and Control Lexical Grammar (C2LG)
 • Based on work of Schade and Hieb
 • Tasking grammar formal language implementation looks forward to SISO C-BML Phase 2
 • C2LG GUI provides visualization of orders/tasks with plug-in interfaces
 • Augmented to accept incomplete JBML format and fill in missing elements
• Form of C2LG expressions:
 OB → Verb Tasker Taskee (Affected|Action) Where Start-When (End-When) Why Label (Mod)*
Some Examples of C2LG for Orders

OB \rightarrow **advance** Tasker Taskee Route-Where
 Start-When (End-When) Why Label (Mod)*

OB \rightarrow **ambush** Tasker Taskee Affected At-Where
 Start-When (End-When) Why Label (Mod)*

OB \rightarrow **assist** Tasker Taskee Action At-Where
 Start-When (End-When) Why Label (Mod)*

OB \rightarrow **rest** Tasker Taskee At-Where Start-
 When End-When Why Label (Mod)*

An actual order:

pursue BtlC CavB En **towards** Z *at* now
 in order to destroy En label_3_15;
C2LG Reports Grammar

• Minimal grammar that allows full tasking
 • Much simpler than natural language
 • Grammar incapable of ambiguity
 • Vocabulary is a separate issue

• Position reports
 • RB → Hostility *position* Who Where When Certainty Label
 • **Status-Report: own position** Coy2 at CP3 at now fact label-rp-289;

• General (operational status) reports
 • Hostility *status-general* Who Status-Value Where When Certainty Label
 • **Status-Report: own status-general** Coy2 OPR at CP3 at now fact label-rp-293;
C2LG GUI Screen
Enabling BML Generation with C2LG GUI

Diagram Description:

- **National C2 System**
 - C2 Format
 - C2 BML Order Output converter

- **Pre-fill**
 - Initialization Input Plugin
 - Pre-fill data
 - Complete BML (JBML push)
 - BML W/S Output Plugin

- **C2LG GUI**
 - Incomplete BML
 - Pre-fill data

- **JBML web services**
 - Central JC3IEDM

- **Simulator**
 - Sim format
 - BML sim interface

Steps:

1. **C2 Format** flows to the **National C2 System**.
2. From **C2 System**, C2 BML Order is output and converted to BML W/S.
3. **Pre-fill** stage involves initialization input plugin.
4. Pre-fill data is processed, leading to complete BML (JBML push).
5. Complete BML flows to **JBML web services**.
6. JBML web services interface with BML sim.
7. Sim format is sent to the **Simulator**.
French Contribution: SCIPIO/SWORD

Command post training system for Brigade and Division HQs
- Automated simulation control based on command agents
- Generation of formatted reports to C2IS (SICF)
- HLA interface
SCIPIO/SWORD Gaming GUI
Netherlands C2 System: ISIS

Integrated Staff Information System at Battalion and above.

- C2 Framework (C2FW) architecture.
- Baseline for a suite of C2 applications (OSIRIS, XANTHOS)
ISIS Display of Simulation Reports
Netherlands Simulation: Pollux
Norwegian Contribution: NORTaC-C2IS

- Tactical C2IS, supporting:
 - Situation awareness
 - Plan / Order
 - Intelligence
 - Order of Battle
- Supports NATO MIP data model and data replication
- Capable of creating basic BML orders (5Ws)
- Orders are stored in an unmodified C2IEMD database
- Interoperates with BML WS through FFI C2IEMD gateway (orders and reports)
UK Contribution: Air Scenario Reporting

- Used NATO C2IS ICC and US Simulation JSAF
- Added air component critical to coalition operations
- Demonstrated interoperation of Air and Ground Domains in C2 and Simulation
Aircraft In-Flight Reports

<table>
<thead>
<tr>
<th>Aircraft call sign</th>
<th>Role</th>
<th>IFREP contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGIC01</td>
<td>ARCCTL</td>
<td>Time on/off station</td>
</tr>
<tr>
<td>LION11</td>
<td>AERRFL</td>
<td>Time on/off station</td>
</tr>
<tr>
<td>NITRO21-24</td>
<td>AIRDEF</td>
<td>Time on/off station, any air defence activity</td>
</tr>
<tr>
<td>PAGAN31-34</td>
<td>OFFAIR</td>
<td>Time on/off station, targets attacked, target damage</td>
</tr>
<tr>
<td>VANDAL41-43</td>
<td>OFFAIR</td>
<td>Time on/off station, targets attacked, target damage</td>
</tr>
<tr>
<td>TRON51-52</td>
<td>WLDWSSL</td>
<td>Time on/off station, EW activity</td>
</tr>
<tr>
<td>MAUL61-62</td>
<td>WLDWSSL</td>
<td>Time on/off station, EW activity</td>
</tr>
</tbody>
</table>
TARGETS

SUPPLY DEPOT

ROAD / RIVER BRIDGE

Choke Point 1

Choke Point 2

Choke Point 3

Choke Point 4

TARGETS

09E-SIW-003
US Contribution: Scripted BML Web Services

- BML continues to grow and change
- Middleware basics remain the same
- Interpreted WS offers flexibility
 - Rapid implementation of new BML constructs
 - Easy to modify underlying data model (JC3IEDM also continues to change)
 - Reduces time and cost for prototyping
 - Scripting language provides a concise definition of BML-to-data model mappings
 - Script writer need not be proficient in Java
- Scripted operation may, however, be slower
Scripted BML WS Configuration

Two implementations: MySQL and SIMCI RI
Scripted Interpreter Advantages

- A way to implement composite transactions where:
 - Validation requires only understanding of the object and JC3IEDM (but not Java)
 - Changes to the mapping are simple to implement
 - New business objects are easy to define and implement
 - Student did six of them in two weeks while learning
 - Scripting language provides a highly concise definition of BML mapping
 - SISO C-BML should use it for that
Demonstration configuration #1

ISIS
C2LG

JC3I EDM +

IBML WEB SERVICES

POLLUX +

Netherlands
Germany
USA
Netherlands
Demonstration configuration #2
Demonstration configuration #3
Demonstration configuration #4
Demonstration configuration #5
Experimentation Plans
MSG-048 Plan for 2009

• Phase C – Soldier in the loop field experimentation
 • Operational evaluation by unbiased SMEs based on realistic scenario
 • Including publish/subscribe Web services
 • Develop MSG-048 study report and prepare follow-on NATO activity

• To be conducted at GMU Prince William Campus, Manassas Virginia, USA
 • 2 – 6 November 2009
New Technical Activity Program

• 2010 – 2013
 • Improve C-BML with Geo-BML, C2-C2 and Sim-Sim
 • Define, assess an operational architecture that will let commander to really use C-BML and MIP capabilities for collaborative planning and training/rehearsal
 • Cooperate with Common Ground JCTD
 • Address time synchronization, initialization, NATO OPORD
Conclusions

• This was second step in NATO MSG-048 experimentation with BML
• Produced more strong evidence in favor of the techniques employed
 • SOA for interoperation
 • Web Service Reference Implementation
 • C2LG-inspired schema
 • JC3IEdM database and vocabulary
• Network-centric development methodology allowed very rapid development
 • Four months requirements to demonstration
 • National development teams with highly cooperative spirit also were essential
 • As was availability of supportive military SMEs
• Increasingly experimental approach planned for 2009
 • Based on national work becoming available
 • Looking forward to SISO C-BML standard that can be evaluated experimentally by MSG-048 follow-on