
From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 1 03/18/00

Chapter 1
The Internet Protocol Stack and the
Network Workbench

The Language of Networking
What is a network? Few people in our technological society can avoid hearing this term several times every week,
but most of us would be hard pressed to define the word network . Definitions abound, often differing slightly from
author to author. We use the following descriptions of network technologies in this book (see the Glossary for
more definitions).

Communication: The process of passing information from a sender to a receiver. This process requires a
channel or medium between the two and a way of representing information that is shared between the two.
Figure 1.1 shows the basic communications process. In all real communications, there are occasional lapses in the
quality of information received so that not all of the information sent by A reaches B. We refer to this garble
added to the information as noise. The sort of communication that interests us in this book is telecommunication
— that is, communication achieved by electronic means at a distance, usually under circumstances in which old-
fashioned communication by human voice alone is impossible.

Sender Receiver Medium
T r a n s m i t Receive

Noise
Figure 1.1 Basic communication process.

Data communication: In the case of computer communication, the information has a clear, definable value.
In this book, we assume that A and B are computers, and that they can communicate in both directions at the
same time (A to B and B to A). When this happens, the communication is called full-duplex communication. If
communication can take place in only one direction at a time (A to B or B to A), that is half-duplex
communication. Computers work with binary digits (bits), so the rate at which the information is passed is
measured in bits per second. In computer communication, the noise takes the form of errors, meaning that the
received information does not match what was sent. As we see later, the “data” being communicated between
computers today may represent the traditional sort of data (numbers or text), or it may represent computer-
encoded audio, video, or graphic images (known as multimedia communication). You will learn more about data
communication in the chapters on Data Link Control (DLC).

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 2 03/18/00

Network: A collection of processing elements that have the ability to communicate with each other. The
elements of the network are generally called nodes. Nodes represent fixed points to which communication links
connect. Communication in the network can happen either directly, through a link between two communicating
elements, or indirectly, in which case the two participants pass the information through one or more other
intermediary elements (which of course requires a path of links and nodes between the two). Figure 1.2 is a
diagram of a simple network, in which the nodes are shown as circles and the links as lines. We can see that some
pairs of nodes are able to communicate directly (for example, nodes 1 and 4). Other pairs—for example , nodes 1
and 7—must pass information through other nodes. The ability to share resources for communication is one reason
networks have become used so widely. Many networks, such as the one in Figure 1.2, also provide more than one
path between any pair of nodes for improved reliability.

1

2

3

4

5

6

7

Link

Node

Figure 1.2 Seven-node network.

Units of Data Communication

Link data rates may be measured in:
 kilobits per second (kbps): thousands of bits per second
 megabits per second (Mbps): millions of bits per second
 gigabits per second (Gbps): billions of bits per second

When using these values in C, we will use exponential notation , for
example one megabit per second, which also can be expressed as
1.0x106 bps in scientific notation, is 1.0E6 bps in exponential notation.

Sometimes the data rate is given in bytes per second (Bps) where
one byte = 8 bits, thus 1 kbps = 125 Bps.

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 3 03/18/00

Local area network (LAN): A network that spans a small distance, typically a single building or a few
buildings on a campus. Most LANs offer high data rates (from 2 megabits per second upward) but do not provide
multiple (or redundant) paths between nodes. LANs are relatively inexpensive and generally are owned by the
organizations that use them. Figure 1.3 shows a simple LAN in which several computers communicate with each
other over a shared wire, known as a bus, which uses a simple mechanism called broadcast, whereby each
transmission is received by all stations. You will learn more about LANs in chapters 6 and 7.

workstation

bus

Figure 1.3 Bus LAN with five nodes.

Wide area network (WAN): A network that spans a larger geographic distance, ranging from a few
separated buildings to worldwide locations. WANs normally are assembled from leased links, provided by a
commercial telecommunication carrier: a company that is in business to move information electronically between
distant points. The computers at which the links terminate are known as routers because they typically have the
ability to route the information toward the destinationover more than one link, using multiple paths to other router
nodes. A typical WAN might be organized as in Figure 1.2. The routers might be operated by the carrier, by the
using organization, or by a third organization, known as a value-added network provider, that provides more
powerful network services usingthe carrier’s communication circuits. Today the most common type of value-
added provider is an Internet service provider (ISP).

The network illustrated in Figure 1.2 is known as a switched network because the routers pick specific
paths among the links and nodes for information flows. That is, they switch the information into different parts of
the network rather than broadcasting it to all parts of the network.

internet: This term means a network of networks. Figure 1.4 shows how several WANs can be
interconnected so that any two computers connected to any of them can communicate. This process involves
installing gateways—computers that interconnect the participating networks. Internetting provides improved
reliability: when the direct path between two networks is out, they may be able to communicate via a third
network. Spelled with a lower-case i, an internet is any such network of networks. Spelled with an upper-case I
(as in Internet), the word is the name for the worldwide network of networks that interconnect using the Internet
Protocol (IP). You will learn more about IP in chapters 8 and 9.

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 4 03/18/00

Gateway

Gateway

Gateway

Network A Network B

Network C

Figure 1.4 Network of networks.

Intranet: Note that a LAN can participate in an internet. At one time, most WANs interconnected large
computers called hosts. Today it is common for smaller computers (PCs and desktop workstations, still called
hosts) to be connected to a LAN, with the LAN in turn connected to a WAN router. The WAN may support a
private corporate network of LANs, known as an intranet, or it may be part of the Internet.

The Protocol Stack

The Internet consists of many millions of computers on tens of thousands of networks. It is arguably the most
complex system ever assembled by mankind. How can such a complex system function reliably, particularly when
it grows several times larger every year? The answer is that the Internet is assembled from components that have
been built by many manufacturers to a common set of standards. The most fundamental of these standards, the
ones we consider in this book, relate to a basic set of functions that has been defined collectively by the
networking industry. At the core of these functions isa set of rules for exchanging information. These rules are
known as protocols.

Networking technology is highly modular: Its systems are divided into “chunks” of well-defined functions.
We organize our study of the Internet protocols around the model that has been defined by their developers, the
Internet Engineering Task Force (IETF). We present this in the form of a five-layer model, shown in Figure 1.5,
which separates the various functions of network communication into layers. Each layer has a different purpose.

Why are they called “protocols”?

Diplomats learned a long time ago that, where different cultures come together, you need rules for accurate
transfer of information. For example, in some cultures shaking your head up and down means “yes”, in other
cultures it means “no.” If you don’t ensure accurate communication, you will soon have a war on your hands!
The rules diplomats develop for communicating are called protocols. Because we have a similar function in
networks, we use the same name for our rules.

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 5 03/18/00

Layering promotes software modularity and reuse because it facilitates creation of products that can be combined
on a “mix and match” basis to provide a system solution to any networking problem. Because of the way they are
layered on top of each other, the arrangement of protocols shown in Figure 1.5 is called a stack . One well-known
stack with seven layers is called the Open Systems Interconnect (OSI) Reference Model. In this book, we use a
simpler five-layer stack that is associated with the Internet. This stack is sometimes shown with only four layers,
with the DLC and Physical layers combined into a single host-to-network layer. This stack is illustrated in Figure
1.5.\\

Application

Transport

 Network/Internet

 Data Link Control

Physical

Application

Transport

 Network/Internet

 Data Link Control

Physical
Figure 1.5 Five-layer protocol stack.

The functions of the five layers are:

Application Layer: Responsible for whatever the user wants the computer to do, such as interacting with a
remote computer, transferring files, or displaying graphics obtained over the World Wide Web (which we refer to
in this book simply as the Web). This interaction is achieved by sending messages.

Transport Layer: Responsible for packaging data for host-to-host delivery. For long streams of data, this
requires dividing the information into segments. This layer also provides a means to identify how messages are to
be used in the receiving host in that a set of messages is associated with a particular application. In many cases,
this layer also keeps track of information flow between sender and receiver (which can be anywhere in the
network) so that no information is lost or presented to the receiving application layer out of order.

Network Layer: Responsible for putting the segments into “electronic envelopes” called packets and
providing the organization necessary to get the packets from sender to receiver. This process involves providing a
consistent means of addressing (locating) the sender and receiver as well as a workable means of routing the
packets through the communications links, routers, and gateways of the Internet. With good routing, the packets
will flow efficiently and will be moved to another path quickly if problems arise.

Data Link Control (DLC) Layer: Responsible for controlling operation of a single data communication link to
move information efficiently from end to end, even though the link may be experiencing transmission errors. An
important function of this layer is Medium Access Control (MAC), which allows multiple computers to share a
single information channel, as shown in Figure 1.3. Other DLC functions include putting delimiters around the
packet to make a frame, detecting (and possibly correcting) transmission errors, and controlling the rate at which
the sender transmits so the receiver is not overwhelmed with data.

Physical Layer: Responsible for passing information between two physical locations. In its simplest form, the
physical layer is a wire. In most cases, it is considerably more complex, being derived from a larger
telecommunications system that supports a variety of uses (mostly commercial telephone service).

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 6 03/18/00

Data units: Notice in the list shown in Figure 1.6, each layer has its own name for the unit of data it transmits.
The formal term for these is protocol data units.

Layer

application

transport

network

data l ink control

physical

Common Data Unit

message

segment

packet

frame

bit

Figure 1.6 Protocol stack layers with common data units.
The layers can be identified by number, starting from the bottom. In particular, it is common to refer to

DLC as “layer two” and the network layer as “layer three.”

From Figure 1.5, we can see that no less than four independent software modules (sometimes more) are
required for a computer to communicate over the Internet. Of these, only the application layer normally is under
the user’s control. The transport, network, and DLC layers almost always are built into the computer’s operating
system. Although not separately visible to the user, each layer has a separate function and affects the
performance seen by the user in a different way. These layers are designed and specified separately, but each
conforms to the general notion of a “layer” shown in Figure 1.7. Each protocol has an interface, or “connection
point,” with the protocols immediately above and below it in the stack. The function it offers to the next higher
protocol layer is called a service. Its communication with the protocol at the same level in the stack at the other
end is called a peer connection and is possible only if the peers use the same protocol.

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 7 03/18/00

Layer N
Module in
Node A

Layer N
Module in
Node B

S e r v i c e Interface
with Node A Higher Layer

Service Interface
with Node A Lower Layer

Service Interface
with Node B Higher Layer

Service Interface
with Node B Lower Layer

 Layer N Protocol
Peer-to-Peer

Communication

Figure 1.7 Generalized protocol layer.

Network Workbench Basics
Now we are ready to take a look at an actual protocol stack. The unique aspect of this book is the Network
Workbench (NW for short). NW is simulation software. That means it uses a computer to model a real-world
process or system in such a way that its important aspects are abstracted. In other words, a good simulation
captures the important properties of whatever is being studied and models its behavior with regard to those
properties to a good degree of accuracy. The question of what constitutes "good" is a critical one for the simulation
developer. Too much accuracy slows down the simulation and may obscure the very properties being studied; too
little accuracy can make the simulation misleading. Network simulators are available in a very wide range of levels
of abstraction and accuracy. NW was designed to have accuracy sufficient for understanding the basic workings
of protocols, without overwhelming its user with unnecessary details. NW does not have the power to depict
network operations with timing accuracy less than a single bit, but it does represent the operation of each protocol
in detail.

The concept behind NW is that the operation of each protocol is implemented in software that is nearly
identical to that of a real network but without many of the features and details of normal network software. The
intention is that those who want to understand how the protocols work can program the protocol modules of NW.
In arriving at a working program, they also arrive at a good understanding of the way the protocol works. The NW
protocols have been abstracted with care to expose the fundamental works of the protocols used in the Internet.

To achieve good accuracy and efficient operation, NW uses a method known as Discrete Event
Simulation (DES), which is useful for studying the behavior of systems over time. DES is useful with
interconnected systems, such as networks, where the complexity of the system and its components makes it
difficult to predict what it will do, given a particular set of inputs. The concept behind DES is to define the smallest
increment of time that is required to represent the simulated process accurately. All actions in the simulation are
then described in terms of this unit (in NW it is called a simulation time "tick). It is important that this increment be
small enough that using it as a basic unit does not mask fine details of the behavior of the system but still large
enough that the count of ticks for the total time simulated can be represented easily within a long integer. The
default tickin NW is 100 nanoseconds (10-7 seconds). Using this tick size, a time duration of 200 microseconds
would have the following value:

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 8 03/18/00

 200E-6/1E-7 = 2000 ticks

Once the basic time increment has been selected, a discrete event simulation is programmed to keep track
of all actions by system components. Typically, the result of an action by one component triggers an action by
another component. For example, a message sent by the application layer in the protocol stack triggers action in
the transport layer, which in turn triggers action in the network layer, etc. The length of time each event requires
can be predicted with good accuracy. For example, if we are sending a 1000-bit packet on a 100 kbps link, we
know it will take 10 milliseconds (.01 second) for the packets to be transmitted, so we set up the DES to produce
an event indicating transmission is complete in 100,000 ticks = .01 second. At the heart of NW lies DES software
that keeps track of all the events “waiting to happen.” The code for this is in module des.cpp.

Built around the DES function, NW has a five-layer protocol stack like the one in Figure 1.5. Only one
accommodation is needed to make the simulation work: Instead of directly invoking the next layer down, each
layer passes the function call through the DES. In addition to providing for appropriate amounts of delay in the
simulation, this process also provides a place for NW to print a trace as the simulation proceeds and collect
statistics about the operation of all aspects of the network.

NW provides five basic services for network simulation. In the next few chapters, you will learn how to
take advantage of these:

• DES, as discussed above

• All software required to make the five-layer stack work

• A set of input files representing networks and electronic mail (also called email) data, with functions to
show the values being used at the beginning of the simulation

• A user-selected trace of actions happening in the simulated network as time proceeds

• A summary of network performance statistics at the end of the simulation

NW Files
Whether you download NW over the Internet or use the copy on the CD that accompanies this book, you will
receive the same collection of files. If you download, you can select a version for your particular computer and
compiler, whereas the CD contains several versions. In either case, you will find the files are organized into
directories or folders, where xxx stands for a supported system—for example, sun for Sun Microsystems and
bcb for Borland C++ Builder. For each version, the top-level nw directory contains the following directories plus
some general descriptive files such as nwdesc.txt, a general description of NW:

Code: Contains C++ code for all available modules and stubs for student solutions
Data: Contains the email files and network descriptions used by NW
object.xxx: Contains xxx-compiled versions of everything in code plus NW solutions

About Typography

Computer file names, program algorithms and C/C++ program code are identified in this book by a non-
proportional typeface, for example the NW header file is code/nw.h. Important concepts are identified by
bold face type , and words with Glossary entries are identified by italic font.

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 9 03/18/00

wkb.xxx: Contains any special software plus instructions for system xxx (you should look at xxx-
instr.txt in particular)

The NW Header File nw.h
It is customary to organize large C and C++ programs into modules and to create a common header file that
defines the data structures and C++ classes used across the collection of modules. The Workbench has been
developed in this way, with all key definitions in file nw.h. A copy of the header file for NW version 4.0 is
included in this book as Appendix C. The file is organized as follows:

• Narrative description of the Network Workbench (NW). Brags, boasts, disclaimers, warnings, and
advice.

• Compilation constant definitions. Names associated with constants to be used when the compiler
generates NW. For example, #define MAX_MSG_SIZE 101 defines the size of the largest
message NW will support, which in turn is used in the data definitions that follow.

• Global NW type definitions. Data types that are used in the various NW classes. For example,
message defines a structure with six header bytes (size, source_net, etc.) and a text field of
size MAX_MSG_SIZE. Types are not actual program variables; rather, they describe generic data
structures that are used by the classes that follow.

• NW Class definitions. This is where C++ becomes important. A C++ class defines a collection of
data elements associated with an instance of the class and the functions that manipulate those data
elements. An important property of classes is inheritance, which means one class can pick up all the
properties of another base class and add its own properties. The C++ functions in the Workbench
create and use instances of these classes, which are called objects. To complete the projects in this
book, you will not need to write any classes of your own. You can use the classes in nw.h to
complete all of the projects. In effect, this means that you can do the projects if you know the C
language, because the C++ part is all provided for you.

Hands-On Activities
Every chapter in this book contains one “homework” problem, which may require use of the computer but does
not entail a significant programming effort. Each chapter also contains one project, which in most cases will

Finding Things in nw.h

The header file nw.h is sizable-- over 60,000 characters. Finding the particular definition you are
looking for can take a long time if you must read clear through the file. Fortunately, modern
programming environments include an editor with search capability, making it easy to find what you are
seeking. For example, you might want to find the definition of packet used in NW. To do this you
would load nw.h into the text editor program on your computer and invoke the “search” function.
Because packet is used in the narrative and constant sections of the header file, you would need to
search forward through about a dozen instances of packet, but after a few clicks you would come
upon what you need: the data type packet with eight bytes of header and segment payload.

From Understanding Internet Protocols Through Hands-On Programming, J. Mark Pullen, Wiley, 2000
Copyright J. Mark Pullen 2000

Pullen/ Internet Protocols w/CD Chapter 1, Page 10 03/18/00

require a few hours to complete, depending on the skill of the reader. The problem and programming assignment
for this chapter follow.

Problem: Identifying Stack Modules in NW
The “master index” to the Network Workbench is in file code/nw.h. This is a C/C++ “header” file that defines
all of the constants, data types, and C++ classes (functions and associated data structures). Your assignment is to
become familiar with nw.h by reading it. In the process of reading, you are to produce a one-line description of
each class and write out the names of the major software modules representing the five layers in the NW stack.

Project: Loading and Running NW
1. Run the appropriate NW setup program to create a working directory of files for the Network

Workbench. If you intend to load NW onto your own computer, you will have to do that first. See
Appendix B for instructionsYou can find the setup process and the directions for running it in
nw*/wkbxxx, where * is the current version of NW, and xxx is the system you are using (for
example, nw40/wkb.sun). The directions will be in xxx-instr.txtProgram setupn will load
program and data files appropriate to your computer and compiler. Here, n identifies the size of the
network to be used. To start, you should run setup7, which will load a seven-node network.

3.2. After completing the setup, run the built-in NW solution to project DLC1. To do this, go to your working
directory and edit program dlc1.cpp, which stands for “NW project DLC1, C++ code.” The edit you
should make is to insert two slashes (//) at the beginning of the line that contains:

#include “stuff.cpp”

This makes the line into a C/C++ comment, so it is ignored by the compiler and is called “commenting out” the
line. Now compile and run dlc1.cpp. The output will pass by quickly on your screen, but it will also
be written into file working/diskout.txt.

3. Now load diskout.txt. in a text editor program to analyze it. You should be able to identify:

• The various NW software modules loaded

• The simulation parameters to be used

• The nodes and links in the network

• The operation of this simulation, in which the application sends only one message

• The flow of data between layers, down the stack at the sending node from application to DLC layer,
and back up the stack the receive node

• The statistics at the end of the simulation, which in the case of DLC1 show that only one frame was
transmitted and one frame was received

