
XOM Prototype Overview
Dennis M. Moen

C3I Center
George Mason University

dmoen@gmu.edu

Protocol Description

This document provides a brief description of the current prototype of the Extensible

Modeling and Simulation Framework [1] Overlay Multicast (XOM). The XOM is an
overlay multicast protocol designed to support many-to-many multicast for real-time
distributed visual simulations. The objective is to provide multicast service over a
unicast network environment using UDP. From the multicast sender and receiver’s point
of view, each XOM Relay (XOMR)looks like an IP layer multicast router.

XOMR performs as a multicast “relay agent” for any application located on the same
subnet as an instance of the XOMR as indicated in Figure 1. For each subnet that
participates in the multicast group communication, there must be a host running a XOMR
on the subnet. The XOMR listens on a set of multicast addresses to the local LAN for
each multicast message generated within its local subnet and forwards this traffic to the
downstream XOMRs according to its multicast tree, by using unicast. Figure 2 presents
the concept and indicates the concept of group aggregation efficiency gains by using the
overlay multicast. The partner XOMR will then multicast the packet to the destination
local LAN, and keep on forwarding the packet to other XOMRs if necessary.

Internet XOMR
XOMR

Simulation
Applications

XOMR XOMR Many XOMRs

Figure 1. XOM Service on a Subnet

Key elements of the current XOMR prototype:
• Group Management

The group addresses and UDP port used by XOMR are specified as command line
arguments. IGMP is not implemented in this version of code

• Partner Discovery
The list of partner XOMRs IP addresses is specified as command line arguments.

• Network Measurement
XOMR uses aggregate delay as the routing metric. A virtual mesh composed of
all the XOMRs is established. This mesh is a concept of the transport layer. The
current version establishes a full mesh, and every XOMR maintains this mesh
topology in a matrix that also includes the measured network delay between
XOMRs. Each XOMR periodically sends an echo request message to all partner
XOMRs it knows. Each XOMR will echo messages received from other XOMRs
which use the response to measure round trip times RTT) as the measure for delay.
Periodically, each XOMR will send its measured RTT values to all its XOMR
partners. Thus, every XOMR keeps a delay matrix of RTT value between every
two XOMRs.

Multicast Groups

Group Members
g0 XOM1,2,3,4
g1 XOM1,2,3,4
g2 XOM1,2,3
g3 XOM1,2

Aggregate Trees

Tree Tree Links (arcs)
T0 1-4, 4-2, 4-3

XOM2

XOM4

XOM3

XOM1

Internet

(g0, g1, g2, g3)

(g0, g1)

(g0, g1, g2)

(g0, g1, g2, g3)

Figure 2. Group Aggregation

• Multicast Forwarding Tree calculation
Periodically, each XOMR calculates a source specific multicast tree according to
its delay matrix. The tree is rooted at the source XOMR. The prototype uses the
Shortest Path First (SPF) tree algorithm.

• Routing Update
Periodically, each XOMR will forward its multicast tree to all other partner
XOMRs. Each XOMR will keep n multicast trees, where n equals to the total
number of XOMRs.

• Message replicating and Forwarding
When an XOMR receives a multicast data message from its local LAN, it will
encapsulate it, replicate it, and forward it to the downstream neighbors according
to its own multicast tree. When an XOMR receives a UDP data message from
another XOMR, it will check to see from which source XOMR the UDP message
was originally generated (but not the upstream neighbor). It then checks the
locally stored multicast trees for that source XOMR to replicate the packet and
forward it to other downstream XOMRs, if any. Meanwhile, the XOMR will de-
capsulate the UDP message and multicast it to its local LAN.

Software Design

The XOM was first implemented in JAVA. Then, to improve the performance, the
message replicating and forwarding modules were implemented in C++. The control
module remains implemented in Java. The JAVA and C++ modules were integrated
by using Java JNI callback.

Figure 3. presents the design structure of the JAVA version XOM implementation.
The JAVA version is composed of the following four major classes:

• public class XOM; This is the main class and creates all the threads and
initializes the data structures. This class also provides general methods and
auxiliary functions, such as network layer address format conversion,
encoding and decoding, searching, etc.

• public class XOMMulticastRouter extends Object implements Runnable;This
is the forwarding engine. This class replicates and forwards the packets. It
listens to both the local LAN and other XOMs. It stores the forwarding table
in its member variable XOMMulticastRouter.forwardingTables: The
forwarding table is periodically updated by class XOMRoutingTable.

• public class XOMRoutingTable implements Runnable;This class performs the
real routing work. It processes the delay information and multicast tree
information received from other XOMs. It then calculates its own multicast
tree according to this information, and updates the forwarding table in class
XOMMulticastRouter:

• public class XOMStatistics implements Runnable; This class measures the
RTT values to all the other XOMs. It also does the statistics work, such as
total number of packets sent and received.

RoutingTreeMessage
 &
echoTimes Message

XOMStatistics

interpretEchoRequestMessage

interpretEchoReplyMessage

sendEchoRequestMessage

echoDelay[]

echoSN[]

echoTime[]

echoRequestTime[]

sendEchoReplyMessage

run()

XOMRoutingTable

getRoutingPartners

receiveRoutingTreeMessage

receiveEchoTimesMessage

printRoutingTrees

routingTrees[][][]

echoTimes[][]

echoTimesReceivedTime[]

getRoutingTreeFlag

printEchoTimes

setRoutingTree

ComputeRouting

run()

XOM

initialize

main

initializeXOM

Aux Methods ...

networkEthernet

XOM XOM

XOMMulticastRouter

multicastChannels xomPartners

multiple sockets
each listen to a multicast group

UDP sockets
communicate with remote XOMs

passToPartner

Route

passToAllPartners

forwardingTables[][][]

updateForwardingTable

Figure 3. JAVA XOM Implementation

The C++ version code (Figure 4.) implements the XOMMulticastRouter class in C++.
The other three classes are still in JAVA. The C++ module communicates with the
JAVA module by using JNI (Java Native Interface). All the data packets are
processed within the C++ module, which includes sending/receiving,
encapsulation/de-capsulation, and forwarding. All the control messages are passed to
the JAVA module.
The C++ module keeps a forwarding table, which is updated by the JAVA module.
The following diagram shows the C++ version design structure:

Multicast
Socket

Multicast
Socket

UDP
Socket

Multicast Traffic to
and from local LAN

(DATA only)

UDP Traffic to and
from other XOMs
(DATA & Control)

Switcher
(the Forwarding table,
used to control packet

swtiching)

DATA traffic is switched
within the C++ module

XOMMulticastRouter

which is NOT a router anymore,
but a bridge between the C++

code and JAVA code. It’s function
can be minimized in the future

XOMRoutingTable

-- Periodically update Routing
Table

-- UPdate Forwarding Table in
the C++ module

-- Generate routingTreeMessage
and process other XOMs

routingTreeMessage
-- Generate echoTimesMessage

and process orhter XOM’s
echoTimeMessage

XOMStatistics
-- Generate EchoRequestMessage

to measure RTT
-- Process EchoRequestMessage

from other XOMs

Control Message
sent to the JAVA mo

updateForwardingTable()

Statistics

showStatistics()

JAVA module

C++ module

Physical Network

Figure 4. C++ Version of XOM

Client Interface Specification

The client refers to the multicast sender and receiver. XOM provides a transparent
service to the client. The client can simply treat XOM as an IP layer multicast router.
Currently, the XOM does not speak IGMP, however, IGMP is planned for future
versions.

The UDP port used by XOM for communications other is specified by
XOM.XOM_PORT. Currently, it is default set to UDP port 4785.

• Command Line Arguments
java XOM <registryAddress> <numberOfMulticastGroups>
<numberOfPortsPerGroup> <lowestMCAddress> <lowestPort>
<routingUpdateInterval> <thisSubnetMaskBits> <debugIndexThisXOM>
<useTCP> [partnerXOMAddress1, partnerXOMAddress2, …]

 registryAddress - InetAddress of registry, 0 if non (currently must be 0)
 numberOfMulticastGroups - count of groups/ports we will support
 lowestMCAddress - first group address to multicast from the subnet,

dotted decimal notation (other addresses follow in
sequence)

 lowestPort - first UDP port to multicast (each address will get one
port in sequence)

 routingUpdateInterval - time in ms between routing updates (default 10 s)
 thisSubnetMaskBits - number of bits used for routing in subnet address

(default 24)
 debugIndexThisXOM - 0 for operation
 useTCP - 0 for UDP tunnels, 1 for TCP tunnels (currently must
 be set to 0)
 partnerXOMAddresss - zero to MAX_PARTNERS addresses, in dotted

decimal format, to be used as partners without
checking the registry

Message Format
• DATA:

 0 8 16 24 32
VERSION TYPE HOPS_TO_LIVE LEN

SOURCE_XOM_ADDRESS
SENDER_ADDRESS

MULTICAST_ADDRESS
UDP_PORT

VERSION: 8 bits, 0x 2
TYPE: 4 bits, 0x 1
HOPS_TO_LIVE: 4 bits, the number of hops can be relayed by XOMs
LEN: 16bits, the packet length including the header
SOURCE_XOM_ADDRESSS: 32bits, the IPv4 address of the XOM that generate this UDP packet
SENDER_ADDRESS: 32bits, the IPv4 address of the end host that generate the multicast packet
MULTICAST_ADDRESS: 32bits, the multicast address used by the end host
UDP_PORT: 16 bits, the UDP port used by the end host

• ROUTING_TREE:

 0 8 16 24 32
VERSION TYPE HOPS_TO_LIVE LEN

SOURCE_XOM_ADDRESS
NUMBER_OF_ROWS ROW_ENTRIES (Variable Length)

For Each ROW_ENTRY:

PARTNER_XOM_ADDRESS NUMBER_OF_COLUMNS COLUMN_ENTRIES (Variable Length)

For Each COLUMN_ENTRY:

TARGET_XOM_ADDRESS

VERSION: 8 bits, 0x 2
TYPE: 4 bits, 0x 2
HOPS_TO_LIVE: 4 bits, the number of hops can be relayed by XOMs
LEN: 16bits, the packet length including the header
SOURCE_XOM_ADDRESSS: 32bits, the IPv4 address of the XOM that generate this routing information
NUMBER_OF_ROWS: 16bits, the number of rows of the routing_tree matrix
ROW_ENTRIES: variable lengths, may be composed of multiple ROW_ENTRYs
PARTNER_XOM_ADDRESS: 32 bits, the IPv4 address of the XOM corresponding to the row
NUMBER_OF_COLLUMNS: 16 bits, number of downstream partner XOMs
COLUMN_ENTRIES: variable length, may be composed of multiple TARGET_XOM_ADDRESS
TARGET_XOM_ADDRESS: 32 bits, the IPv4 address of the downstream XOM

• ECHO_TIMES:

 0 8 16 24 32
VERSION TYPE HOPS_TO_LIVE LEN

SOURCE_XOM_ADDRESS
NUMBER_OF_ENTRIES ENTRIES (Variable Length)

For Each Entry:

TARGET_XOM_ADDRESS ECHO_TIME

VERSION: 8 bits, 0x 2
TYPE: 4 bits, 0x 3
HOPS_TO_LIVE: 4 bits, the number of hops can be relayed by XOMs
LEN: 16bits, the packet length including the header
SOURCE_XOM_ADDRESSS: 32bits, the IPv4 address of the XOM that generate this echo time list
NUMBER_OF_ENTRIES: 16 bits, the number of entries in the echo time list
ENTRIES: variable length, may be composed of multiple entries
TARGET_XOM_ADDRESS: the IPv4 address of the target XOM
ECHO_TIME: the RTT value between the SOURCE_XOM_ADDRESS and TARGET_XOM_ADDRESS

• ECHO_REQUEST:

 0 8 16 24 32
VERSION TYPE HOPS_TO_LIVE LEN

SOURCE_XOM_ADDRESS
RESERVED SN

VERSION: 8 bits, 0x 2
TYPE: 4 bits, 0x 4
HOPS_TO_LIVE: 4 bits, the number of hops can be relayed by XOMs
LEN: 16bits, the packet length including the header, always equals to 0x12
SOURCE_XOM_ADDRESSS: 32bits, the IPv4 address of the XOM that generate this echo request
RESERVED: 24 bits
SN: 8 bits

• ECHO_REPLY:

 0 8 16 24 32
VERSION TYPE HOPS_TO_LIVE LEN

SOURCE_XOM_ADDRESS
RESERVED SN

VERSION: 8 bits, 0x 2
TYPE: 4 bits, 0x 5
HOPS_TO_LIVE: 4 bits, the number of hops can be relayed by XOMs
LEN: 16bits, the packet length including the header, always equals to 0x12
SOURCE_XOM_ADDRESSS: 32bits, the IPv4 address of the XOM that generate this echo reply
RESERVED: 24 bits
SN: 8 bits

References:

[1] Brutzman, D., M. Zyda, M., J.M. Pullen, and K.L. Morse, “Extensible Modeling
and Simulation Framework (XMSF): Challenges for Web-Based Modeling and
Simulation,” US Naval Postgraduate School, 2002

